

[bookmark: _top]OData Extension for Data Aggregation Version 4.0
Working Draft 0405
[bookmark: _Toc85472892]16 October20 December 20175
Technical Committee:
OASIS Open Data Protocol (OData) TC
Chairs:
Ralf Handl (ralf.handl@sap.com), SAP SE
Ram Jeyaraman (Ram.Jeyaraman@microsoft.com), Microsoft
Editor:
Ralf Handl (ralf.handl@sap.com), SAP SE
Hubert Heijkers (hubert.heijkers@nl.ibm.com), IBM
Gerald Krause (gerald.krause@sap.com), SAP SE
Michael Pizzo (mikep@microsoft.com), Microsoft
Heiko Theißen (heiko.theissen@sap.com), SAP SE	Comment by Heiko Theißen: ODATA-1404
Martin Zurmuehl (martin.zurmuehl@sap.com), SAP SE
[bookmark: AdditionalArtifacts]Additional artifacts:	Comment by Handl, Ralf: Reference V4.01?	Comment by Gerald Krause: Applying some of the issues introduced references to 4.01, so I’d say Yes.
This prose specification is one component of a Work Product that consists of:
· OData Extension for Data Aggregation Version 4.0 (this document)
· OData Aggregation ABNF Construction Rules Version 4.0
· OData Aggregation ABNF Test Cases
· OData Aggregation Vocabulary
[bookmark: RelatedWork]Related work:
This specification is related to:
· OData Version 4.0 Part 1: Protocol
· OData Version 4.0 Part 2: URL Conventions
· OData Version 4.0 Part 3: CSDL
· OData ABNF Construction Rules Version 4.0
· OData ABNF Test Cases
· OData Core Vocabulary
· OData Measures Vocabulary
· OData JSON Format Version 4.0
This specification replaces or supersedes:
· None
Declared XML namespaces:
· None
Abstract:
This specification adds basic grouping and aggregation functionality (e.g. sum, min, and max) to the Open Data Protocol (OData) without changing any of the base principles of OData.
Status:
This Working Draft (WD) has been produced by one or more TC Members; it has not yet been voted on by the TC or approved as a Committee Draft (Committee Specification Draft or a Committee Note Draft). The OASIS document Approval Process begins officially with a TC vote to approve a WD as a Committee Draft. A TC may approve a Working Draft, revise it, and re-approve it any number of times as a Committee Draft.

Copyright © OASIS Open 2016. All Rights Reserved.	
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents
1	Introduction	5
1.1 Terminology	5
1.2 Normative References	5
1.3 Non-Normative References	5
1.4 Typographical Conventions	5
2	Overview	6
2.1 Definitions	6
2.2 Example Data Model	7
2.3 Example Data	8
2.4 Example Use Cases	8
3	System Query Option $apply	10
3.1 Transformation aggregate	11
3.1.1 Keyword as	11
3.1.2 Keyword with	12
3.1.3 Aggregation Methods	12
3.1.3.1 Standard Aggregation Method sum	12
3.1.3.2 Standard Aggregation Method min	13
3.1.3.3 Standard Aggregation Method max	13
3.1.3.4 Standard Aggregation Method average	13
3.1.3.5 Standard Aggregation Method countdistinct	14
3.1.3.6 Custom Aggregation Methods	14
3.1.4 Keyword from	14
3.1.5 Virtual Property $count	15
3.2 Transformation topcount	16
3.3 Transformation topsum	16
3.4 Transformation toppercent	17
3.5 Transformation bottomcount	17
3.6 Transformation bottomsum	18
3.7 Transformation bottompercent	18
3.8 Transformation identity	19
3.9 Transformation concat	19
3.10 Transformation groupby	20
3.10.1 Simple Grouping	20
3.10.2 Grouping with rollup and $all	21
3.11 Transformation filter	23
3.12 Transformation expand	23
3.13 Transformation search	24
3.14 Transformation compute	24
3.15 Filter Function isdefined	26
3.16 Evaluating $apply	27
3.17 Evaluating $apply as an Expand Option	27
3.18 ABNF for Extended URL Conventions	27
4	Representation of Aggregated Instances	28
5	Cross-Joins and Aggregation	29
6	Vocabulary for Data Aggregation	30
6.1 Aggregation Capabilities	30
6.2 Property Annotations	30
6.2.1 Groupable Properties	30
6.2.2 Aggregatable Properties	30
6.2.3 Custom Aggregates	31
6.2.4 Context-Defining Properties	32
6.2.5 Annotation Example	32
6.3 Hierarchies	33
6.3.1 Leveled Hierarchy	33
6.3.2 Recursive Hierarchy	33
6.3.2.1 Hierarchy Filter Functions	33
6.3.3 Hierarchy Examples	34
6.4 Actions and Functions on Aggregated Entities	36
7	Examples	38
7.1 Requesting Distinct Values	38
7.2 Standard Aggregation Methods	39
7.3 Requesting Custom Aggregates	42
7.4 Aliasing	43
7.5 Combining Transformations per Group	44
7.6 Model Functions as Set Transformations	45
7.7 Controlling Aggregation per Rollup Level	46
7.8 Transformation Sequences	47
8	Conformance	50
Appendix A.	Acknowledgments	51
Appendix B.	Revision History	52

[bookmark: _Toc492655023]Introduction
[bookmark: _Toc85472893][bookmark: _Toc287332007]This specification adds the notion of aggregation to the Open Data Protocol (OData) without changing any of the base principles of OData. It defines semantics and a representation for aggregation of data, especially:
· Semantics and operations for querying aggregated data,
· Results format for queries containing aggregated data,
· Vocabulary terms to annotate what can be aggregated, and how.
[bookmark: _Toc492655024]Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
[bookmark: _Toc492655025]Normative References
[bookmark: ODataABNF][OData-ABNF]	OData ABNF Construction Rules Version 4.0.
See the link in "Related work" section on cover page.	Comment by Handl, Ralf: Reference V4.01?	Comment by Gerald Krause: Applying some of the issues introduced references to 4.01, so I’d say Yes.
[bookmark: ODataAggABNF][OData-Agg-ABNF]	OData Aggregation ABNF Construction Rules Version 4.0.
See link in "Additional artifacts" section on cover page.
[bookmark: ODataCSDL][OData-CSDL]	OData Version 4.0 Part 3: CSDL.
See link in "Related work" section on cover page.
[bookmark: ODataJSON][OData-JSON]	OData JSON Format Version 4.0.
See link in "Related work" section on cover page.
[bookmark: ODataProtocol][OData-Protocol]	OData Version 4.0 Part 1: Protocol.
See link in "Related work" section on cover page.
[bookmark: ODataURL][OData-URL]	OData Version 4.0 Part 2: URL Conventions.
See link in "Related work" section on cover page.
[bookmark: ODataVocAggr][OData-VocAggr]	OData Aggregation Vocabulary.
See link in "Additional artifacts" section on cover page.
[bookmark: ODataVocMeas][OData-VocMeas]	OData Measures Vocabulary.
See link in "Related work" section on cover page.
[bookmark: rfc2119][RFC2119]	Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 14, RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt.
[bookmark: _Toc492655026]Non-Normative References
[bookmark: Rollup][TSQL ROLLUP]	http://msdn.microsoft.com/en-us/library/bb522495.aspx
[bookmark: _Toc492655027]Typographical Conventions
Keywords defined by this specification use this monospaced font.
Normative source code uses this paragraph style.
Some sections of this specification are illustrated with non-normative examples.
Example 1: text describing an example uses this paragraph style
Non-normative examples use this paragraph style.
All examples in this document are non-normative and informative only.
All other text is normative unless otherwise labeled.
[bookmark: _Toc492655028]Overview
Open Data (OData) services expose a data model that describes the schema of the service in terms of the Entity Data Model (EDM, see [OData-CSDL]) and then allows for querying data in terms of this model. The responses returned by an OData service are based on that data model and retain the relationships between the entities in the model.
Extending the OData query features with simple aggregation capabilities avoids cluttering OData services with an exponential number of explicitly modeled “aggregation level entities” or else restricting the consumer to a small subset of predefined aggregations.
Adding the notion of aggregation to OData without changing any of the base principles in OData has two aspects:
1. Means for the consumer to query aggregated data on top of any given data model (for sufficiently capable data providers)
2. Means for the provider to annotate what data can be aggregated, and in which way, allowing consumers to avoid asking questions that the provider cannot answer.
Implementing any of these two aspects is valuable in itself independent of the other, and implementing both provides additional value for consumers. The descriptions provided by the provider help a consumer understand more of the data structure looking at the service's exposed data model. The query extensions allow the consumers to express explicitly the desired aggregation behavior for a particular query. They also allow consumers to formulate queries that refer to the annotations as shorthand.
[bookmark: _Toc492655029]Definitions
This specification defines the following terms:
· Aggregatable Property – a property for which the values can be aggregated using an aggregation method
· Aggregation Method – a method that can be used to aggregate an aggregatable property or expression
· Standard Aggregation Method – one of the standard aggregation methods: sum, min, max, average, and countdistinct
· Custom Aggregation Method – a custom aggregation method that can be applied to expressions of a specified type
· Custom Aggregate – a dynamic property that can appear in an aggregate clause
· Groupable Property – a property whose values can be used to group entities or complex type instances for aggregation
· Hierarchy – an arrangement of groupable properties whose values are represented as being “above”, “below”, or “at the same level as” one another
· [bookmark: ODataExpression]Expression – derived from the commonExpr rule (see [OData-ABNF])	Comment by Gerald Krause: ODATA-1040
· [bookmark: ODataAggregatablePrimitiveType]Aggregatable Primitive Type – a primitive type other than Edm.Stream or subtypes of Edm.Geography or Edm.Geometry
· [bookmark: ODataAggregatableExpression]Aggregatable Expression – an expression resulting in a value of an aggregatable primitive type
[bookmark: _Toc492655030]Example Data Model
Example 2: The following diagram shows the terms defined in the section above applied to a simple model that is used throughout this document.
[image:][image:]	Comment by Gerald Krause: ODATA-1162
The Amount property in the Sales entity type is an aggregatable property, and the properties of the related entity types are groupable. These can be arranged in four hierarchies:
· Product hierarchy based on groupable properties of the Category and Product entity types
· Customer hierarchy based on Country and Customer
· Time hierarchy based on Year, Month and Date
· SalesOrganization based on the recursive association to itself
In the context of Online Analytical Processing (OLAP), this model might be described in terms of a Sales “cube” with an Amount “measure” and three “dimensions”. This document will avoid such terms, as they are heavily overloaded.
Query extensions and descriptive annotations can both be applied to normalized as well as partly or fully denormalized schemas.

[image:][image:]	Comment by Gerald Krause: ODATA-1162
Note that OData’s Entity Data Model (EDM) does not mandate a single storage model; it may be realized as a completely conceptual model whose data structure is calculated on-the-fly for each request. The actual "entity-relationship structure" of the model should be chosen to simplify understanding and querying data for the target audience of a service. Different target audiences may well require differently structured services on top of the same storage model.
[bookmark: _Toc492655031]Example Data
[bookmark: _Toc337483479]Example 3: The following sample data will be used to further illustrate the capabilities introduced by this extension.
[image:]
[bookmark: _Toc492655032]Example Use Cases
Example 4: In the example model, one prominent use case is the relation of customers to products. The first question that is likely to be asked is: “Which customers bought which products?”
This leads to the second more quantitative question: “Who bought how much of what?”
The answer to the second question typically is visualized as a cross-table:
	
	
	
	Food
	
	
	Non-Food
	

	
	
	
	
	Sugar
	Coffee
	
	Paper

	USA
	
	USD
	14
	2
	12
	5
	5

	
	 Joe
	USD
	6
	2
	4
	1
	1

	
	 Sue
	USD
	8
	
	8
	4
	4

	Netherlands
	
	EUR
	2
	2
	
	3
	3

	
	 Sue
	EUR
	2
	2
	
	3
	3

The data in this cross-table can be written down in a shape that more closely resembles the structure of the data model, leaving cells empty that have been aggregated away:
	Customer/Country
	Customer/Name
	Product/Category/Name
	Product/Name
	Amount
	Currency /Code

	USA
	Joe
	Non-Food
	Paper
	1
	USD

	USA
	Joe
	Food
	Sugar
	2
	USD

	USA
	Joe
	Food
	Coffee
	4
	USD

	USA
	Sue
	Food
	Coffee
	8
	USD

	USA
	Sue
	Non-Food
	Paper
	4
	USD

	Netherlands
	Sue
	Food
	Sugar
	2
	EUR

	Netherlands
	Sue
	Non-Food
	Paper
	3
	EUR

	USA
	
	Food
	Sugar
	2
	USD

	USA
	
	Food
	Coffee
	12
	USD

	USA
	
	Non-Food
	Paper
	5
	USD

	Netherlands
	
	Food
	Sugar
	2
	EUR

	Netherlands
	
	Non-Food
	Paper
	1
	EUR

	USA
	Joe
	Food
	
	6
	USD

	USA
	Joe
	Non-Food
	
	1
	USD

	USA
	Sue
	Food
	
	8
	USD

	USA
	Sue
	Non-Food
	
	4
	USD

	Netherlands
	Sue
	Food
	
	2
	EUR

	Netherlands
	Sue
	Non-Food
	
	3
	EUR

	USA
	
	Food
	
	14
	USD

	USA
	
	Non-Food
	
	5
	USD

	Netherlands
	
	Food
	
	2
	EUR

	Netherlands
	
	Non-Food
	
	3
	EUR

Note that this result contains seven fully qualified aggregate values, plus fifteen rollup rows with subtotal values, shown in bold.
[bookmark: _Toc492655033]System Query Option $apply
[bookmark: _Toc337731795]Aggregation behavior on a collection of instances is triggered using the query option $apply. It takes a sequence of set transformations, separated by forward slashes to express that they are consecutively applied, i.e. the result of each transformation is the input to the next transformation. This is consistent with the use of service-defined bindable and composable functions in path segments.	Comment by Gerald Krause: ODATA-946
Unless otherwise noted, each set transformation:
· preserves the structure of the input type, so the structure of the result fits into the data model of the service.
· does not necessarily preserve the number of instances in the result, as this will typically differ from the number of instances in the input set.
· does not necessarily guarantee that all properties of the result instances have a well-defined value.
So the actual (or relevant) structure of each intermediary result will often resemble a projection of the original data model that could also have been formed using the standard system query options $expand and $select defined in [OData-Protocol], with dynamic properties representing the aggregate values. The parameters of set transformations allow specifying how the result instances are constructed from the input instances. This especially means that all property paths relate to the structure of the immediate input set.	Comment by Gerald Krause: Or usually, typically, mostly... but not always - transformation nest being an exception, cf. ODATA-1169
	Comment by Gerald Krause: ODATA-944
The set transformations defined by this extension are
· aggregate
· topcount
· topsum
· toppercent
· bottomcount
· bottomsum
· bottompercent
· identity
· concat
· groupby
· filter
· expand
· search
· compute
Service-defined bound functions that take an entity set a collection as their binding parameter MAY be used as set transformations within $apply if the type of the binding parameter matches the type of the result set of the preceding transformation. If it returns an entity seta collection, further transformations can follow the bound function. The parameter syntax for bound function segments is identical to the parameter syntax for bound functions in resource path segments or $filter expressions. See section 7.6 for an example.	Comment by Gerald Krause: ODATA-967
Change already reflected in ABNF 	Comment by Gerald Krause: ODATA-967
[bookmark: _The_aggregate_Transformation]If a data service that supports $apply does not support it on the collection identified by the request resource path, it MUST fail with 501 Not Implemented and a meaningful human-readable error message.
The representation of the aggregated result set as response payload is described in section 4. The aggregated entities returned in the request examples in the following sections are transient and represented in the OData 4.01 JSON format that allows to omit the id control information for transient entities. For further brevity, the examples also leave out the type control information required to disambiguate the type of represented dynamic property values. 	Comment by Gerald Krause: ODATA-1279, the deletions of the 120 occurrences of "@odata.id": null are not commented with this issue :-)	Comment by Gerald Krause: ODATA-1137
[bookmark: _Toc492655034]Transformation aggregate
The aggregate transformation takes a comma-separated list of one or more aggregate expressions as parameters and returns a result set with a single instance, representing the aggregated value for all instances in the input set.
An aggregate expression may be:	Comment by Gerald Krause: ODATA-1205
Change already reflected in ABNF
· an expression aggregatable expression valid in a $filter system query option on the input set that results in a simple value, e.g. the path to an aggregatable property, with a specified aggregation method, 	Comment by Gerald Krause: ODATA-1206
· an aggregatable property that can be reached via a path consisting of a sequence of navigation properties, complex properties and complex collection properties, with a specified aggregation method,	Comment by Gerald Krause: ODATA-1206
Change reflected in ABNF test cases
· a custom aggregate that can be reached via a path consisting of a sequence of navigation properties, complex properties and complex collection properties,
· any of the above, followed by a from expression,
· any of the above, enclosed in parentheses and prefixed with a navigation path to related entities, which serve as input set for the enclosed aggregate expression,
· the virtual property $count., which is a shortcut for the expression 1 with sum	Comment by Gerald Krause: ODATA-1255

Any aggregate expression that specifies an aggregation method MUST define an alias for the resulting aggregated value. The resulting instance contains one dynamic property per parameter representing the aggregated value across all instances within the input set. The JSON representation of these dynamic properties will include odata.type annotations where required by [OData-JSON]. If paths are present, the corresponding navigation properties are implicitly expanded to make the properties part of the result representation.	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137
[bookmark: _The_Keyword_as][bookmark: _Toc374610359][bookmark: _Toc374610898][bookmark: _Toc374621096][bookmark: _Toc374626103][bookmark: _Toc374626224][bookmark: _Keyword_as][bookmark: _Toc374610360][bookmark: _Toc374610899][bookmark: _Toc374621097][bookmark: _Toc374626104][bookmark: _Toc374626225][bookmark: _Toc374610361][bookmark: _Toc374610900][bookmark: _Toc374621098][bookmark: _Toc374626105][bookmark: _Toc374626226][bookmark: _Virtual_Value_$all][bookmark: _Toc374610362][bookmark: _Toc374610901][bookmark: _Toc374621099][bookmark: _Toc374626106][bookmark: _Toc374626227][bookmark: _Keyword_as_1][bookmark: _Toc353983372][bookmark: _Toc354059065][bookmark: _Toc354070176][bookmark: _Toc354668942][bookmark: _Toc362428714][bookmark: _Toc353289643][bookmark: _Toc353294803][bookmark: _Toc353294855][bookmark: _Toc353377439][bookmark: _Toc353390941][bookmark: _Toc353453175]The aggregate transformation affects the structure of the result set: An aggregatable expression resulting in a simple value and a custom aggregate corresponds to a dynamic property in a $select option. If the expression operates on related entitiesthey are preceded by a navigation path, the corresponding $select option would be nested in one $expand option for each navigation property in the navigation path.	Comment by Gerald Krause: ODATA-1038	Comment by Gerald Krause: ODATA-945
[bookmark: _Toc492655035]Keyword as
Aggregate expressions can define an alias using the as keyword, followed by a SimpleIdentifier (see [OData-CSDL, section 17.2]).
The alias will introduce a dynamic property in the aggregated result set. The introduced dynamic property is added to the type containing the original expression or custom aggregate. The alias MUST NOT collide with names of declared properties, custom aggregates, or other aliases in that type.
When an aggregation method is specified, an alias MUST be applied to the expression.
Example 5:
GET ~/Sales?$apply=aggregate(Amount with sum as Total,Amount with max as MxA)
results in
{
 "@odata.context": "$metadata#Sales(Total,MxA)",
[bookmark: _Hlk55218962] "value": [
 { "@odata.id": null, "Total": 24, "MxA": 8, ... }
]	Comment by Gerald Krause: ODATA-1137
}
Example 6:
GET ~/Sales?$apply=aggregate(Amount mul Product/TaxRate with sum as Tax)
results in
{
 "@odata.context": "$metadata#Sales(Tax)",
 "value": [
 { "@odata.id": null, "Tax": 2.08 }
]
}
If the aggregate expression is to be evaluated on related entities, the expression and its alias MUST be enclosed in parentheses and prefixed with the navigation path to the related entities. The expression within the parentheses MUST be an expression that could also be used in a $filter system query option on the related entities identified by the navigation path. This syntax is intentionally similar to the syntax of $expand with nested query options.	Comment by Gerald Krause: ODATA-1040	Comment by Gerald Krause: ODATA-945
Example 7:
GET ~/Products?$apply=aggregate(Sales(Amount mul Product/TaxRate with sum as Tax))
results in
{
 "@odata.context": "$metadata#Products(Sales(Tax))",
 "value": [
 { "@odata.id": null, "Sales": [{ "Tax": 2.08 }] }
]
}
[bookmark: _Keyword_with][bookmark: _Toc374610364][bookmark: _Toc374610903][bookmark: _Toc374621101][bookmark: _Toc374626108][bookmark: _Toc374626229][bookmark: _Toc374610365][bookmark: _Toc374610904][bookmark: _Toc374621102][bookmark: _Toc374626109][bookmark: _Toc374626230][bookmark: _Toc374610366][bookmark: _Toc374610905][bookmark: _Toc374621103][bookmark: _Toc374626110][bookmark: _Toc374626231][bookmark: _Toc361047145][bookmark: _Toc361237350][bookmark: _Toc361237443][bookmark: _Toc361260064][bookmark: _Toc361332221][bookmark: _Ref353970005][bookmark: _Toc353983374][bookmark: _Toc354059067][bookmark: _Toc354070178][bookmark: _Toc354668944][bookmark: _Ref361833995][bookmark: _Toc362428715]An alias affects the structure of the result set: each alias corresponds to a dynamic property in a $select option. If the aggregate expression with the alias operates on related entities, this dynamic property that is nested in an $expand option for each navigation property in the path to the related entitiesof the aliased expression.	Comment by Gerald Krause: ODATA-945	Comment by Gerald Krause: ODATA-945
[bookmark: _Toc492655036]Keyword with
The keyword with is used to apply an aggregation method to an aggregatable expression. The property or expression being aggregated is followed by the keyword with, followed by the name of the aggregation method to apply, followed by the keyword as and an alias.	Comment by Gerald Krause: ODATA-1040
[bookmark: _Toc492655037]Aggregation Methods
Values can be aggregated using the standard aggregation methods sum, min, max, average, and countdistinct, or with custom aggregation methods defined by the service. Aggregate expressions containing an aggregation method MUST define an alias for the resulting aggregate value.
[bookmark: _Toc492655038]Standard Aggregation Method sum
The standard aggregation method sum can be applied to numeric values to return the sum of the non-null values, or null if there are no non-null values or the input set is empty. The provider MUST choose a single type for the property across all instances of that type in the result that is capable of representing the aggregated values. This may require a larger integer type, Edm.Decimal with sufficient Precision and Scale, or Edm.Double.
Example 8:
GET ~/Sales?$apply=aggregate(Amount with sum as Total)
results in
{
 "@odata.context": "$metadata#Sales(Total)",
 "value": [
 { "@odata.id": null, "Total": 24, ... }
]
}
[bookmark: _Toc492655039]Standard Aggregation Method min
The standard aggregation method min can be applied to values with a totally ordered domain to return the smallest of the non-null values, or null if there are no non-null values or the input set is empty.
The result property will have the same type as the input property.
Example 9:
GET ~/Sales?$apply=aggregate(Amount with min as MinAmount)
results in
{
 "@odata.context": "$metadata#Sales(MinAmount)",
 "value": [
 { "@odata.id": null, "MinAmount": 1, ... }
]	Comment by Gerald Krause: ODATA-1137
}
[bookmark: _Toc492655040]Standard Aggregation Method max
The standard aggregation method max can be applied to values with a totally ordered domain to return the largest of the non-null values, or null if there are no non-null values or the input set is empty.
The result property will have the same type as the input property
Example 10:
GET ~/Sales?$apply=aggregate(Amount with max as MaxAmount)
results in
{
 "@odata.context": "$metadata#Sales(MaxAmount)",
 "value": [
 { "@odata.id": null, "MaxAmount": 8, ... }
]	Comment by Gerald Krause: ODATA-1137
}
[bookmark: _Toc492655041]Standard Aggregation Method average
The standard aggregation method average can be applied to numeric values to return the sum of the non-null values divided by the count of the non-null values, or null if there are no non-null values or the input set is empty.
The provider MUST choose a single type for the property across all instances of that type in the result that is capable of representing the aggregated values; either Edm.Double or Edm.Decimal with sufficient Precision and Scale.
Example 11:
GET ~/Sales?$apply=aggregate(Amount with average as AverageAmount)
results in
{
 "@odata.context": "$metadata#Sales(AverageAmount)",
 "value": [
 { "@odata.id": null, "AverageAmount": 3.0 }
]
}
[bookmark: _Toc492655042]Standard Aggregation Method countdistinct
The aggregation method countdistinct counts the distinct values, omitting any null values. For navigation properties, it counts the distinct entities in the union of all entities related to entities in the input set. For collection-valued primitive properties, it counts the distinct items in the union of all collection values in the input set.
The result property MUST have type Edm.Decimal with Scale="0" and sufficient Precision.
Example 12:
GET ~/Sales?$apply=aggregate(Product with countdistinct as DistinctProducts)
results in
{
 "@odata.context": "$metadata#Sales(DistinctProducts)",
 "value": [
 { "@odata.id": null, "DistinctProducts": 3, ... }	Comment by Gerald Krause: ODATA-1137
]
}
The number of instances in the input set can be counted with the virtual propertyaggregate expression $count.	Comment by Gerald Krause: ODATA-1255
[bookmark: _Toc492655043]Custom Aggregation Methods
Services can define custom aggregation methods if the functionality offered by the standard aggregation methods is not sufficient for the intended consumers.
[bookmark: _The_as_Keyword][bookmark: _The_from_Keyword][bookmark: _Keyword_from][bookmark: _Toc353983377][bookmark: _Toc354059070][bookmark: _Toc354070181][bookmark: _Ref354561006][bookmark: _Toc354668947][bookmark: _Toc362428721][bookmark: _Toc376977436][bookmark: _Toc353294808][bookmark: _Toc353294860][bookmark: _Toc353377449][bookmark: _Toc353390951][bookmark: _Toc353453179]Custom aggregation methods MUST use a namespace-qualified name (see [OData-ABNF]), i.e. contain at least one dot. Dot-less names are reserved for future versions of this specification.
Example 13: custom aggregation methods that concatenates distinct string values separated by commas
GET ~/Sales?$apply=groupby((Customer/Country),
 aggregate(Amount with sum as Total,
 Product/Name with Custom.concat as ProductNames))
results in
{
 "@odata.context": "$metadata#Sales(Customer(Country),AmountTotal,ProductNames)",
 "value": [
 { "@odata.id":null, "Customer": { "Country": "Netherlands" },
 "AmountTotal": 5, ProductNames: "Paper,Sugar", ... },
 { "@odata.id":null, "Customer": { "Country": "USA" }, 	Comment by Gerald Krause: ODATA-1137
 "AmountTotal": 19, ProductNames: "Coffee,Paper,Sugar", ... }
]
}	Comment by Gerald Krause: ODATA-1137
[bookmark: _Toc492655044]Keyword from
The from keyword gives control over the order of aggregation across properties that are not part of the result structure and over the aggregation methods applied in every step.
Instead of applying a single aggregation method for calculating the aggregated value of an aggregate expression across all properties not included in the result structure, other aggregation methods to be applied when aggregating away certain properties MAY be specified using the from keyword, followed by a property path of a groupable property. Each groupable property MUST be followed by a with clause unless the aggregate expression is a custom aggregate, in which case the provider-defined behavior of the custom aggregate is used:	Comment by Gerald Krause: ODATA-1040
 as
	from [with]
	…
from [with]
as 	Comment by :
If the from keyword is used, an alias MUST be introduced.
If the from keyword is present, first the aggregation method determined by the aggregate expression is used to aggregate away properties that are not mentioned in a from clause and are not grouping properties.
Then consecutively properties not part of the result are aggregated away in the order of the from clauses and using the method specified by the from clause.
More formally, the calculation of aggregate with the from keyword is equivalent with a list of set transformations:
groupby((, …,),
 aggregate(as))
/groupby((, …,),
 aggregate(with 	as))
…
/groupby((),
 aggregate(with 	as))
/aggregate(with 	as))
The order of from clauses has to be compatible with hierarchies referenced from a leveled hierarchy annotation or specified as an unnamed hierarchy in groupby with rollup: lower nodes in a hierarchy need to be mentioned before higher nodes in the same hierarchy. Properties not belonging to any hierarchy can appear at any point in the from clause.
If an aggregate transformation has more than one aggregate expression as parameter that uses the from keyword, then all properties mentioned in from clauses must appear in the same order in all aggregate expressions.	Comment by Gerald Krause: ODATA-968

[bookmark: _Ref357758524][bookmark: _Ref357758511]Example 14:
GET ~/Sales?$apply=aggregate(Amount with sum as DailyAverage
 from Time with average
 as DailyAverage)	Comment by Gerald Krause: ODATA-1201
is equivalent to
GET ~/Sales?$apply=groupby((Time),aggregate(Amount with sum as Total))
 /aggregate(Total with average as DailyAverage)
and results in the average sales volume per day
{
 "@odata.context": "$metadata#Sales(DailyAverage)",
[bookmark: _The_topcount_Transformation][bookmark: _The_Virtual_Property][bookmark: _Toc353377450][bookmark: _Toc353390952][bookmark: _Toc353453180][bookmark: _Toc353983378][bookmark: _Toc354059071][bookmark: _Toc354070182][bookmark: _Toc354668948][bookmark: _Toc353294809][bookmark: _Toc353294861] "value": [
 { "@odata.id": null, "DailyAverage": 3.428571428571429 }
]
}
Virtual Property $countAggregate Expression $count	Comment by Gerald Krause: ODATA-1255
The value of the aggregate expression virtual property $count is the number of instances in the input set. It MUST always specify an alias and MUST NOT specify an aggregation method.	Comment by Gerald Krause: ODATA-1255
The result property will have type Edm.Decimal Int64with Scale="0" and sufficient Precision.	Comment by Gerald Krause: ODATA-1215
Example 15:
GET ~/Sales?$apply=aggregate($count as SalesCount)
results in
{
 "@odata.context": "$metadata#Sales(SalesCount)",
 "value": [
 { "@odata.id": null, "SalesCount": 8, ... }
]	Comment by Gerald Krause: ODATA-1137
}
[bookmark: _Toc492655046]Transformation topcount
The topcount transformation takes two parameters.
The first parameter specifies the number of instances to return in the transformed set. It MUST be an expression expression that can be evaluated on the set level and MUST result in a positive integer.	Comment by Gerald Krause: ODATA-1040
The second parameter specifies the value by which the instances are compared for determining the result set. It MUST be an expression expression that can be evaluated on instances of the input set and MUST result in a primitive numeric valuein a value of a primitive type whose values are totally ordered.	Comment by Gerald Krause: ODATA-1040	Comment by Gerald Krause: ODATA-1041
The transformation retains the number of instances specified by the first parameter that have the highest values specified by the second expressionparameter. It does not change the order of the instances in the input set.
In case the value of the second expression is ambiguous, the service MUST impose a stable ordering before determining the returned instances.
Example 16:
GET ~/Sales?$apply=topcount(2,Amount)
results in
{
 "@odata.context": "$metadata#Sales",
 "value": [
 { "ID": 3, "Amount": 4, ... },
 { "ID": 4, "Amount": 8, ... }
]
}
[bookmark: _The_topsum_Transformation][bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: _Toc353983380][bookmark: _Toc354059073][bookmark: _Toc354070184][bookmark: _Toc354668950][bookmark: _Toc353294810][bookmark: _Toc353294862][bookmark: _Toc353377452][bookmark: _Toc353390954][bookmark: _Toc353453182]The result set of topcount has the same structure as the input set.
[bookmark: _Toc492655047]Transformation topsum
The topsum transformation takes two parameters.
The first parameter indirectly specifies the number of instances to return in the transformed set. It MUST be an expression expression that can be evaluated on the set level and MUST result in a number.
The second parameter specifies the value by which the instances are compared for determining the result set. It MUST be an expression aggregatable expression that can be evaluated on instances of the input set and MUST result in a primitive numeric value.	Comment by Gerald Krause: ODATA-1040
The transformation returns the minimum set of instances that have the highest values specified by the second parameter and whose sum of these values is equal to or greater than the value specified by the first parameter. It does not change the order of the instances in the input set.
In case the value of the second expression is ambiguous, the service MUST impose a stable ordering before determining the returned instances.
Example 17:
GET ~/Sales?$apply=topsum(15,Amount)
results in
{
 "@odata.context": "$metadata#Sales",
 "value": [
 { "ID": 3, "Amount": 4, ... },
 { "ID": 4, "Amount": 8, ... },
 { "ID": 5, "Amount": 4, ... }
]
}
[bookmark: _The_toppercent_Transformation][bookmark: _Toc353983381][bookmark: _Toc354059074][bookmark: _Toc354070185][bookmark: _Toc354668951][bookmark: _Toc353294811][bookmark: _Toc353294863][bookmark: _Toc353377453][bookmark: _Toc353390955][bookmark: _Toc353453183]The result set of topsum has the same structure as the input set.
[bookmark: _Toc492655048]Transformation toppercent
The toppercent transformation takes two parameters.
The first parameter specifies the number of instances to return in the transformed set. It MUST be an expression expression that can be evaluated on the set level and MUST result in a positive number less than or equal to 100.	Comment by Gerald Krause: ODATA-1040
The second parameter specifies the value by which the instances are compared for determining the result set. It MUST be an expression aggregatable expression that can be evaluated on instances of the input set and MUST result in a primitive numeric value.	Comment by Gerald Krause: ODATA-1040
The transformation returns the minimum set of instances that have the highest values specified by the second parameter and whose cumulative total is equal to or greater than the percentage of the cumulative total of all instances in the input set specified by the first parameter. It does not change the order of the instances in the input set.
In case the value of the second expression is ambiguous, the service MUST impose a stable ordering before determining the returned instances.
Example 18:
GET ~/Sales?$apply=toppercent(50,Amount)
results in
{
 "@odata.context": "$metadata#Sales",
 "value": [
 { "ID": 3, "Amount": 4, ... },
 { "ID": 4, "Amount": 8, ... }
]
}
[bookmark: _The_bottomcount_Transformation][bookmark: _Toc353983382][bookmark: _Toc354059075][bookmark: _Toc354070186][bookmark: _Toc354668952][bookmark: _Toc353294812][bookmark: _Toc353294864][bookmark: _Toc353377454][bookmark: _Toc353390956][bookmark: _Toc353453184]The result set of toppercent has the same structure as the input set.
[bookmark: _Toc492655049]Transformation bottomcount
The bottomcount transformation takes two parameters.
The first parameter specifies the number of instances to return in the transformed set. It MUST be an expression expression that can be evaluated on the set level and MUST result in a positive integer.	Comment by Gerald Krause: ODATA-1040
The second parameter specifies the value by which the instances are compared for determining the result set. It MUST be an expression expression that can be evaluated on instances of the input set and MUST result in a value of a primitive type whose values are totally orderedin a primitive numeric value.	Comment by Gerald Krause: ODATA-1040
The transformation retains the number of instances specified by the first parameter that have the lowest values specified by the second parameter. It does not change the order of the instances in the input set.
In case the value of the second expression is ambiguous, the service MUST impose a stable ordering before determining the returned instances.
Example 19:
GET ~/Sales?$apply=bottomcount(2,Amount)
results in
{
 "@odata.context": "$metadata#Sales"
 "value": [
 { "ID": 1, "Amount": 1, ... },
 { "ID": 7, "Amount": 1, ... }
]
}
[bookmark: _The_bottomsum_Transformation][bookmark: _Toc353983383][bookmark: _Toc354059076][bookmark: _Toc354070187][bookmark: _Toc354668953][bookmark: _Toc353294813][bookmark: _Toc353294865][bookmark: _Toc353377455][bookmark: _Toc353390957][bookmark: _Toc353453185]The result set of bottomcount has the same structure as the input set.
[bookmark: _Toc492655050]Transformation bottomsum
The bottomsum transformation takes two parameters.
The first parameter indirectly specifies the number of instances to return in the transformed set. It MUST be an expression expression that can be evaluated on the set level and MUST result in a number.	Comment by Gerald Krause: ODATA-1040
The second parameter specifies the value by which the instances are compared for determining the result set. It MUST be an expression aggregatable expression that can be evaluated on instances of the input set and MUST result in a primitive numeric value.	Comment by Gerald Krause: ODATA-1040
The transformation returns the minimum set of instances that have the lowest values specified by the second parameter and whose sum of these values is equal to or greater than the value specified by the first parameter. It does not change the order of the instances in the input set.
In case the value of the second expression is ambiguous, the service MUST impose a stable ordering before determining the returned instances.
Example 20:
GET ~/Sales?$apply=bottomsum(7,Amount)
results in
{
 "@odata.context": "$metadata#Sales",
 "value": [
 { "ID": 2, "Amount": 2, ... },
 { "ID": 6, "Amount": 2, ... },
 { "ID": 7, "Amount": 1, ... },
 { "ID": 8, "Amount": 2, ... }
]
}
[bookmark: _The_bottompercent_Transformation][bookmark: _Toc353983384][bookmark: _Toc354059077][bookmark: _Toc354070188][bookmark: _Toc354668954][bookmark: _Toc353294814][bookmark: _Toc353294866][bookmark: _Toc353377456][bookmark: _Toc353390958][bookmark: _Toc353453186]The result set of bottomsum has the same structure as the input set.
[bookmark: _Toc492655051]Transformation bottompercent
The bottompercent transformation takes two parameters.
The first parameter indirectly specifies the number of instances to return in the transformed set. It MUST be an expression that can be evaluated on the set level and MUST result in a positive number less than or equal to 100.
The second parameter specifies the value by which the instances are compared for determining the result set. It MUST be an expression aggregatable expression that can be evaluated on instances of the input set and MUST result in a primitive numeric value.	Comment by Gerald Krause: ODATA-1040
The transformation returns the minimum set of instances that have the lowest values specified by the second parameter and whose cumulative total is equal to or greater than the percentage of the cumulative total of all instances in the input set specified by the first parameter. It does not change the order of the instances in the input set.
In case the value of the second expression is ambiguous, the service MUST impose a stable ordering before determining the returned instances.
Example 21:
GET ~/Sales?$apply=bottompercent(50,Amount)
results in
{
 "@odata.context": "$metadata#Sales",
 "value": [
 { "ID": 1, "Amount": 1, ... },
 { "ID": 2, "Amount": 2, ... },
 { "ID": 5, "Amount": 4, ... },
 { "ID": 6, "Amount": 2, ... },
 { "ID": 7, "Amount": 1, ... },
 { "ID": 8, "Amount": 2, ... }
]
}
[bookmark: _The_identity_Transformation][bookmark: _Toc353983385][bookmark: _Toc354059078][bookmark: _Toc354070189][bookmark: _Toc354668955][bookmark: _Toc353294815][bookmark: _Toc353294867][bookmark: _Toc353377457][bookmark: _Toc353390959][bookmark: _Toc353453187]The result set of bottompercent has the same structure as the input set.
[bookmark: _Toc492655052]Transformation identity
The identity transformation returns its input set in unchanged order.
[bookmark: _The_combine_Transformation][bookmark: _Toc353294816][bookmark: _Toc353294868][bookmark: _Toc353377458][bookmark: _Toc353390960][bookmark: _Toc353453188]Example 22:
GET ~/Sales?$apply=identity
[bookmark: _Toc492655053]Transformation concat
The concat transformation takes two or more parameters, each of which is a sequence of set transformations.
It applies each transformation sequence to the input set and concatenates the intermediate result sets in the order of the parameters into the result set, preserving the ordering of the individual result sets as well as the structure of each result instance, potentially leading to an inhomogeneously structured result set.
Example 23:
GET ~/Sales?$apply=concat(topcount(2,Amount),
 aggregate(Amount))
results in
{
 "@odata.context": "$metadata#Sales",
[bookmark: _The_groupby_Transformation] "value": [
 { "ID": 4, "Amount": 8, ... },
 { "ID": 3, "Amount": 4, ... },
 { "@odata.context": "$metadata#Sales(Amount)/$entity", "Amount": 24, ... }
]	Comment by Gerald Krause: ODATA-1137
}
[bookmark: _The_groupby_Transformation_1][bookmark: _Transformation_groupby][bookmark: _Toc374621121][bookmark: _Toc374626128][bookmark: _Toc374626249][bookmark: _Toc353983387][bookmark: _Toc354059080][bookmark: _Toc354070191][bookmark: _Toc354668957][bookmark: _Toc362428731][bookmark: _Toc353294817][bookmark: _Toc353294869][bookmark: _Toc353377459][bookmark: _Toc353390961][bookmark: _Toc353453189]Note that two Sales entities with the second highest amount 4 exist in the input set; the entity with ID 3 is included in the result, because the service chose to use the ID property for imposing a stable ordering.
The result set of concat has a mixed form consisting of the structures imposed by the two transformation sequences.
[bookmark: _Toc492655054]Transformation groupby
The groupby transformation takes one or two parameters and
1. Splits the initial set into subsets where all instances in a subset have the same values for the grouping properties specified in the first parameter,
2. Applies set transformations to each subset according to the second parameter, resulting in a new set of potentially different structure and cardinality,
3. Ensures that the instances in the result set contain all grouping properties with the correct values for the group,
4. Concatenates the intermediate result sets into one result set.
[bookmark: _Toc492655055]Simple Grouping
In its simplest form the first parameter of groupby specifies the grouping properties, a comma-separated list of one or more single-valued property paths (paths ending in a single-valued primitive, complex, or navigation property) that is enclosed in parentheses. A path may consist of a sequence of navigation properties, complex properties and complex collection properties. The same property path SHOULD NOT appear more than once; redundant property paths MAY be considered valid, but MUST NOT alter the meaning of the request. If the property path leads to a single-valued navigation property, this means grouping by the entity-id of the related entities. 	Comment by Gerald Krause: ODATA-1206
The optional second parameter is a list of set transformations, separated by forward slashes to express that they are consecutively applied. Transformations may take into account the grouping properties for producing their result, e.g. aggregate removes properties that are used neither for grouping nor for aggregation.
If the service is unable to group by same values for any of the specified properties, it MUST reject the request with an error response. It MUST NOT apply any implicit rules to group instances indirectly by another property related to it in some way.
[bookmark: _Ref357763019]Example 24:
GET ~/Sales?$apply=groupby((Customer/Country,Product/Name),
 aggregate(Amount with sum as Total))
results in
{
 "@odata.context": "$metadata#Sales(Customer(Country),Product(Name),Total)",
 "value": [
 { "@odata.id": null, "Customer": { "Country" : "Netherlands" },
 "Product": { "Name": "Paper" }, "Total": 3, ... },
 { "@odata.id": null, "Customer": { "Country": "Netherlands" },
 "Product": { "Name": "Sugar" }, "Total": 2, ... },
 { "@odata.id": null, "Customer": { "Country: "USA" },
 "Product": { "Name": "Coffee" }, "Total": 12, ... },
 { "@odata.id": null, "Customer": { "Country: "USA" },
 "Product": { "Name": "Paper" },"Total": 5, ... },
 { "@odata.id": null, "Customer": { "Country: "USA" },	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137
 "Product": { "Name": "Sugar" }, "Total": 2, ... }	Comment by Gerald Krause: ODATA-1137
]
}
[bookmark: _Grouping_with_rollup][bookmark: _Toc353294819][bookmark: _Toc353294871][bookmark: _Toc353377461][bookmark: _Toc353390963]The second parameter can be omitted to request distinct value combinations of the grouping properties.
Example 25:
GET ~/Sales?$apply=groupby((Product/Name,Amount))
and result in
{
 "@odata.context": "$metadata#Sales(Product(Name),Amount)",
 "value": [
 { "@odata.id": null, "Product": { "Name": "Coffee" }, "Amount": 4 },
 { "@odata.id": null, "Product": { "Name": "Coffee" }, "Amount": 8 },
 { "@odata.id": null, "Product": { "Name": "Paper" }, "Amount": 1 },
 { "@odata.id": null, "Product": { "Name": "Paper" }, "Amount": 2 },
 { "@odata.id": null, "Product": { "Name": "Paper" }, "Amount": 4 },
 { "@odata.id": null, "Product": { "Name": "Sugar" }, "Amount": 2 }
]
}
[bookmark: _Grouping_with_rollup_1][bookmark: _Toc353453191][bookmark: _Toc353983389][bookmark: _Toc354059082][bookmark: _Toc354070193][bookmark: _Toc354668959]Note that the result has the same structure, but not the same content as
GET ~/Sales?$expand=Product($select=Name)&$select=Amount
[bookmark: _Grouping_with_rollup_2][bookmark: _Toc362428733]A groupby transformation affects the structure of the result set similar to $select where each grouping property corresponds to an item in a $select clause.
Grouping by a navigation property is treated as grouping by the references of the navigation targets and adds the canonical URL of the target entities as deferred representation of the navigation property to the result structure, which then can be expanded and projected partially away using the standard query options $expand and $select.	Comment by Gerald Krause: ODATA-971
[bookmark: _Toc376947494][bookmark: _Toc376944822]Grouping properties that specify navigation properties are automatically expanded, and the specified properties of that navigation property correspond to properties specified in a $select expand option on the expanded navigation property. The set transformations specified in the second parameter of groupby further affect the structure as described for each transformation; for example, the aggregate transformation adds properties for each aggregate expression.
[bookmark: _Toc492655056]Grouping with rollup and $all
The rollup grouping operator allows requesting additional levels of aggregation in addition to the most granular level defined by the grouping properties. It can be used instead of a property path in the first parameter of groupby.
The rollup grouping operator has two overloads, depending on the number of parameters.
If used with one parameter, the parameter MUST be the value of the Qualifier attribute of an annotation with term LeveledHierarchy prefixed with the navigation path leading to the annotated entity type. This named hierarchy is used for grouping instances.
If used with two or more parameters, it defines an unnamed leveled hierarchy. The first parameter is the root of the hierarchy defining the coarsest granularity and MUST either be a single-valued property path or the virtual property $all. The other parameters MUST be singe-valued property paths and define consecutively finer-grained levels of the hierarchy. This unnamed hierarchy is used for grouping instances.
After resolving named hierarchies, the same property path MUST NOT appear more than once.
Grouping with rollup is processed for leveled hierarchies using the following equivalence relationships, in which pn is a property path, T is a transformation, the ellipsis stands in for zero or more property paths, and R stands in for zero or more rollup operators or property paths:
· groupby((rollup(p1,…,pn-1,pn),R),T) is equivalent to
concat(groupby((p1,…,pn-1,,R,T),groupby((rollup(p1,…,pn-1),R),T))
· groupby((rollup(p1,p2),R),T) is equivalent to
concat(groupby((p1,p2,R),T),groupby((,R),T))
· groupby((rollup($all, p1),R),T) is equivalent to
concat(groupby((p1,R),T),groupby((R),T))
· groupby((rollup($all,p1)),T) is equivalent to
concat(groupby((p1),T),T)
Loosely speaking groupby with rollup splits the input set into groups using all grouping properties, then removes the last property from one of the hierarchies and splits it again using the remaining grouping properties. This is repeated until all of the hierarchies have been used up.
Example 26: rolling up two hierarchies, the first with two levels, the second with three levels:
(rollup(p1,1,p1,2),rollup(p2,1,p2,2,p2,3))
will result in the six groupings
 (p1,1,p1,2,	p2,1,p2,2,p2,3)
 (p1,1,p1,2,	p2,1,p2,2)
 (p1,1,p1,2,	p2,1)
 (p1,1,	p2,1,p2,2,p2,3)
 (p1,1,	p2,1,p2,2)
 (p1,1,	p2,1)
Note that rollup stops one level earlier than GROUP BY ROLLUP in TSQL, see [TSQL ROLLUP][TSQL ROLLUP], unless the virtual property $all is used as the hierarchy root level. Loosely speaking the root level is never rolled up.
Ordering of rollup instances within detail instances is up to the service if no $orderby is given, otherwise at the position determined by $orderby.
Example 27: answering the second question in section 2.4
GET ~/Sales?$apply=groupby((rollup(Customer/Country,Customer/Name),
 rollup(Product/Category/Name,Product/Name),
 Currency/Code),
 aggregate(Amount with sum as Total))
results in seven entities for the finest grouping level
{
"@odata.context":"$metadata#Sales(Customer(Country,Name),Product(Category(Name),Name),Total,Currency(Code))",
 "value": [
 { "@odata.id": null, "Customer": { "Country": "USA", "Name": "Joe" },
 "Product": { "Category": { "Name": "Non-Food" }, "Name": "Paper" },
 "Total": 1, "Currency": { "Code": "USD" }, ...
 },
 ...	Comment by Gerald Krause: ODATA-1137
plus additional fifteen rollup entities for subtotals: five without customer name
 { "@odata.id": null, "Customer": { "Country": "USA" },
 "Product": { "Category": { "Name": "Food" }, "Name": "Sugar" },
 "Total": 2, "Currency": { "Code": "USD" }, ...
 },
 ...	Comment by Gerald Krause: ODATA-1137
six without product name
 { "@odata.id": null, "Customer": { "Country": "USA", "Name": "Joe" },
 "Product": { "Category": { "Name": "Food" } },
 "Total": 6, "Currency": { "Code": "USD" }, ...
 },	Comment by Gerald Krause: ODATA-1137
 ...
and four with neither customer nor product name
[bookmark: _Toc353375616][bookmark: _Toc353375682][bookmark: _Toc353377469][bookmark: _Toc353380771][bookmark: _Toc353390971][bookmark: _Toc353393043][bookmark: _Toc353435843][bookmark: _Toc353435950][bookmark: _Toc353439898][bookmark: _Toc353439972][bookmark: _Toc353440069][bookmark: _Toc353441365][bookmark: _Toc353441428][bookmark: _Toc353441783][bookmark: _Toc353442339][bookmark: _Toc353442402][bookmark: _Toc353443200][bookmark: _Toc353443891][bookmark: _Toc353444312][bookmark: _Toc353445101][bookmark: _Toc353445346][bookmark: _Toc353445410][bookmark: _Toc353445474][bookmark: _Toc353445538][bookmark: _Toc353445602][bookmark: _Toc353445666][bookmark: _Toc353449531][bookmark: _Toc353449957][bookmark: _Toc353450127][bookmark: _Toc353450268][bookmark: _Toc353450778][bookmark: _Toc353450842][bookmark: _Toc353451148][bookmark: _Toc353451267][bookmark: _Toc353451515][bookmark: _Toc353451579][bookmark: _Toc353451643][bookmark: _Toc353451772][bookmark: _Toc353451836][bookmark: _Toc353452020][bookmark: _Toc353452269][bookmark: _Toc353452333][bookmark: _Toc353452507][bookmark: _Toc353452631][bookmark: _Toc353452695][bookmark: _Toc353453135][bookmark: _Toc353453199][bookmark: _Toc353453321][bookmark: _Toc353480532][bookmark: _Toc353801112][bookmark: _Toc353801219][bookmark: _Toc353875749][bookmark: _Toc353878572][bookmark: _Toc353881712][bookmark: _Toc353956681][bookmark: _Toc353980741][bookmark: _Toc353980848][bookmark: _Toc353981205][bookmark: _Toc353981625][bookmark: _Toc353981906][bookmark: _Toc353983079][bookmark: _Toc353983174][bookmark: _Toc353984650][bookmark: _The_filter_Transformation][bookmark: _Toc353983390][bookmark: _Toc353294820][bookmark: _Toc353294872][bookmark: _Toc353377470][bookmark: _Toc353390972][bookmark: _Toc353453200] { "@odata.id": null, "Customer": { "Country": "USA" },
 "Product": { "Category": { "Name": "Food" } },
 "Total": 14, "Currency": { "Code": "USD" }, ...
 },
 ...
]	Comment by Gerald Krause: ODATA-1137
}
[bookmark: _Toc354059083][bookmark: _Toc354070194][bookmark: _Toc354668960][bookmark: _Toc362428734]Note that the absence of one or more properties of the result structure imposed by the surrounding OData context allows distinguishing rollup entities from other entities.
[bookmark: _Toc492655057]Transformation filter
The filter transformation takes a Boolean expression expression that could also be passed as a $filter system query option to its input set and returns all instances for which this expression evaluates to true.	Comment by Gerald Krause: ODATA-1040
Example 28:
GET ~/Sales?$apply=filter(Amount gt 3)
results in
{
 "@odata.context": "$metadata#Sales",
 "value": [
 { "ID": 3, "Amount": 4, ... },
 { "ID": 4, "Amount": 8, ... },
 { "ID": 5, "Amount": 4, ... }
]
}
[bookmark: _The_expand_Transformation][bookmark: _Toc353983391][bookmark: _Toc354059084][bookmark: _Toc354070195][bookmark: _Toc354668961][bookmark: _Toc353294821][bookmark: _Toc353294873][bookmark: _Toc353377471][bookmark: _Toc353390973][bookmark: _Toc353453201]The result set of filter has the same structure as the input set.
[bookmark: _Toc492655058]Transformation expand
The expand transformation takes a navigation property path that could also be passed as a $expand system query option as its first parameter. The second parameter specifies a transformation sequence that will be applied to the related entities. The optional second parameter can be either a filter transformation that will be applied to the related entities or an expand transformation. An arbitrary number of expand transformations can be passed as additional parameters to achieve multi-level expansion.	Comment by Krause, Gerald: @Theissen, Heiko Hier hast du noch irgendwas geändert ohne change tracking…	Comment by Krause, Gerald: 	Comment by Heiko Theißen: Ich habe den zweiten Satz gelöscht, den Du eingefügt hattest (It can either be …). Keine Ahung, warum das nicht unter meinem Namen getrackt wurde.	Comment by Krause, Gerald: @Theissen, HeikoAchtung, habe neues issue in der aktuellen spec gefunden: Dort verwenden alle Bsps expand mit collection-valued nav props. Allerdings sind single-valued navprops nicht ausgeschlossen,.d.h.auch in der aktuellen spec gibt es ein Problem, wenn auf eine einzelne Instanz eine filter transformation angewendet werden soll.
Auswege:
Single-valued navprops ausschließen (brechen uns use cases weg)
In 2a unten vereinheitlichen wir das hin zu einem set, damit kann das Problem nicht auftauchen. Aber: Das verändert die Struktur: Das Ergebnis eines expand(sgl-vld-nav-prop) wird eine collection!
(mein Favorit) Fallunterscheidung einführen, so dass bei single-valued navprop T nicht angegeben werden darf
Was meinst du? (betrifft gleichermaßen auch join())	Comment by Gerald Krause: ODATA-1068
Change already reflected in ABNF
The result set is the input set with the specified navigation property expanded according to the specified expand options. 	Comment by Krause, Gerald: @Theissen, Heiko „of expand(p, T)“

For a property path s=p/q, where p is a navigation property and q is a navigation property path, expand(s, T) is recursively defined as expand(p, expand(q, T)). Additional parameters to expand with further expand transformations like expand(p, T, expand(q, U),…) are recursively defined as expand(p,T)/expand(p/q,U)/…

For a navigation property p and transformation sequence T, the result set of expand(p, T) is determined by the following steps.:
1. Verify constraints:
a. Ensure that p is addressable for all instances of the input set and its target(s) can be dereferenced, otherwise reject the request.
b. If p is single-valued, ensure that T is either an expand or an identity transformation, otherwise reject the request.
2. Start with an empty result set.
3. If p is collection-valued: For each entity e in the input set:
a. Form a new "nested input set" from the target of the navigation property p.
b. Apply transformation sequence T to the nested input set from step (a).
c. Add an instance to the result set that is a clone of e with an additional dynamic collection-valued property with name p, whose value is the intermediate result from step (b).
4. If p is single-valued: For each entity e in the input set:
a. Form a new "singleton input set" from the target of the navigation property p.
b. Apply the transformation T to the singleton input set from step (a) (which may be null). The result set is also a singleton.
c. Add an instance to the result set that is a clone of e with an additional dynamic complex property with name p, whose value is the singleton result from step (b).

[bookmark: _Hlk55226492]Subsequent transformations dereference p as a dynamic property. This implies that
· all subsequent transformations that dereference p obtain the result of the transformation sequence T, whereas dereferencing of other properties is unaffected
· a subsequent expand transformation cannot have the same property path again.
[bookmark: _Toc340007117][bookmark: _Toc340051406][bookmark: _Toc340159260][bookmark: _Toc337731796]Example 29:
GET ~/Customers?$apply=expand(Sales,filter(Amount gt 3))
results in
{
 "@odata.context": "$metadata#Customers",
 "value": [
 { "ID": "C1", "Name": "Joe", "Country": "USA",
 "Sales": [{ "ID": 3, "Amount": 4, ... }]},
 { "ID": "C2", "Name": "Sue", "Country": "USA",
 "Sales": [{ "ID": 4, "Amount": 8, ... },
 { "ID": 5, "Amount": 4, ... }]},
 { "ID": "C3", "Name": "Sue", "Country": "Netherlands", "Sales": []},
 { "ID": "C4", "Name": "Luc", "Country": "France", "Sales": []}
]
}
[bookmark: _Toc353875752][bookmark: _Toc353878575][bookmark: _Toc353881715][bookmark: _Toc353956684][bookmark: _Toc353980744][bookmark: _Toc353980851][bookmark: _Toc353981208][bookmark: _Toc353981494][bookmark: _Toc353981628][bookmark: _Toc353981909][bookmark: _Toc353983082][bookmark: _Toc353983177][bookmark: _Toc353983392][bookmark: _Toc353984653][bookmark: _Toc353875753][bookmark: _Toc353878576][bookmark: _Toc353881716][bookmark: _Toc353956685][bookmark: _Toc353980745][bookmark: _Toc353980852][bookmark: _Toc353981209][bookmark: _Toc353981629][bookmark: _Toc353981910][bookmark: _Toc353983083][bookmark: _Toc353983178][bookmark: _Toc353984654][bookmark: _Toc353875763][bookmark: _Toc353878586][bookmark: _Toc353881726][bookmark: _Toc353956695][bookmark: _Toc353980755][bookmark: _Toc353980862][bookmark: _Toc353981219][bookmark: _Toc353981639][bookmark: _Toc353981920][bookmark: _Toc353983093][bookmark: _Toc353983188][bookmark: _Toc353984664][bookmark: _Toc353875764][bookmark: _Toc353878587][bookmark: _Toc353881727][bookmark: _Toc353956696][bookmark: _Toc353980756][bookmark: _Toc353980863][bookmark: _Toc353981220][bookmark: _Toc353981640][bookmark: _Toc353981921][bookmark: _Toc353983094][bookmark: _Toc353983189][bookmark: _Toc353984665][bookmark: _Toc353875765][bookmark: _Toc353878588][bookmark: _Toc353881728][bookmark: _Toc353956697][bookmark: _Toc353980757][bookmark: _Toc353980864][bookmark: _Toc353981221][bookmark: _Toc353981641][bookmark: _Toc353981922][bookmark: _Toc353983095][bookmark: _Toc353983190][bookmark: _Toc353984666][bookmark: _Toc353875766][bookmark: _Toc353878589][bookmark: _Toc353881729][bookmark: _Toc353956698][bookmark: _Toc353980758][bookmark: _Toc353980865][bookmark: _Toc353981222][bookmark: _Toc353981642][bookmark: _Toc353981923][bookmark: _Toc353983096][bookmark: _Toc353983191][bookmark: _Toc353984667][bookmark: _Toc353875768][bookmark: _Toc353878591][bookmark: _Toc353881731][bookmark: _Toc353956700][bookmark: _Toc353980760][bookmark: _Toc353980867][bookmark: _Toc353981224][bookmark: _Toc353981644][bookmark: _Toc353981925][bookmark: _Toc353983098][bookmark: _Toc353983193][bookmark: _Toc353984669][bookmark: _Toc353875773][bookmark: _Toc353878596][bookmark: _Toc353881736][bookmark: _Toc353956705][bookmark: _Toc353980765][bookmark: _Toc353980872][bookmark: _Toc353981229][bookmark: _Toc353981649][bookmark: _Toc353981930][bookmark: _Toc353983103][bookmark: _Toc353983198][bookmark: _Toc353984674][bookmark: _Toc340007123][bookmark: _Toc340051412][bookmark: _Toc340159266][bookmark: _Toc338852937][bookmark: _Toc340159268][bookmark: _Toc337730156][bookmark: _Toc337730224][bookmark: _Toc337730913][bookmark: _Toc337731743][bookmark: _Toc337731802][bookmark: _Toc337732515][bookmark: _Toc337733351][bookmark: _Toc338080811][bookmark: _Toc338838102][bookmark: _Toc338852939][bookmark: _Toc337730158][bookmark: _Toc337730226][bookmark: _Toc337730915][bookmark: _Toc337731745][bookmark: _Toc337731804][bookmark: _Toc337732517][bookmark: _Toc337733353][bookmark: _Toc338080813][bookmark: _Toc338838104][bookmark: _Toc340051416][bookmark: _Toc353983394][bookmark: _Ref354058284][bookmark: _Toc354059085][bookmark: _Toc354070196][bookmark: _Toc354668962][bookmark: _Toc337731807][bookmark: _Toc353294831][bookmark: _Toc353294883][bookmark: _Toc353390983][bookmark: _Toc353377481][bookmark: _Toc353453205]The result has the same structure and content as
GET ~/Customers?$expand=Sales($filter=Amount gt 3)
An expand transformation affects the structure of the result set in the same way as an $expand option for the first parameter, with nested $expand options for the optional nested expand transformations.
[bookmark: _Toc362428736]Example 30: nested expand transformations
GET ~/Categories?$apply=expand(Products,expand(Sales,filter(Amount gt 3)))
results in
{
 "@odata.context": "$metadata#CustomersCategories",	Comment by Gerald Krause: ODATA-1369
 "value": [
 { "ID": "PG1", "Name": "Food",
 "Products": [
 { "ID": "P1", "Name": "Sugar", "Color": "White", "Sales": [] },
 { "ID": "P2", "Name": "Coffee", "Color": "Brown",
 "Sales": [{ "ID": 3, "Amount": 4, ... },
 { "ID": 4, "Amount": 8, ... }] }
]
 },
 { "ID": "PG2", "Name": "Non-Food",
 "Products": [
 { "ID": "P3", "Name": "Paper", "Color": "White",
 "Sales": [{ "ID": 5, "Amount": 4, ... },	Comment by Gerald Krause: ODATA-972
 { "ID": 8, "Amount": 2, ... }] },
 { "ID": "P4", "Name": "Pencil", "Color": "Black", "Sales": [] }
]
 }
]
}
[bookmark: _Toc492655059]Transformation search
The search transformation takes a search expression that could also be passed as a $search system query option to its input set and returns all entities that match this search expression.
Example 31: assuming that free-text search on Sales takes the related product name into account,
GET ~/Sales?$apply=search(coffee)
results in
{
 "@odata.context": "$metadata#Sales",
 "value": [
 { "ID": 3, "Amount": 4, ... },
 { "ID": 4, "Amount": 8, ... }
]
}
The result set of search has the same structure as the input set.
[bookmark: _Toc492655060]Transformation compute
The compute transformation takes a comma-separated list of one or more compute expressions as parameters.
A compute expression is an aggregatable expression valid in a $filter system query option on the input set that results in a simple value, followed by the as keyword, followed by a SimpleIdentifier (see [OData-CSDL, section 17.2]), called an alias. This alias MUST NOT collide with names of properties in the input set or with other aliases introduced in the same compute transformation.
The result set is constructed by copying the instances of the input set and adding one dynamic property per compute expression to each instance of the input set. The name of the added property is the alias following the as keyword. The value of the property is the value of the compute expression evaluated on that instance. The type of the property is determined by the rules for evaluating $filter expressions and numeric promotion defined in [OData-URL]. The JSON representation of these dynamic properties will include odata.type control information where required by [OData-JSON]. 	Comment by Gerald Krause: ODATA-1137
The values of properties copied from the input set are not changed, nor is the order of instances changed.
Example 32:
GET ~/Sales?$apply=compute(Amount mul Product/TaxRate as Tax)
results in
{
 "@odata.context": "$metadata#Sales",
 "value": [
 { "ID": 1, ..., "Amount": 1, "Tax": 0.14 },
 { "ID": 2, ..., "Amount": 2, "Tax": 0.12 },
 { "ID": 3, ..., "Amount": 4, "Tax": 0.24 },
 { "ID": 4, ..., "Amount": 8, "Tax": 0.48 },
 { "ID": 5, ..., "Amount": 4, "Tax": 0.56 },
 { "ID": 6, ..., "Amount": 2, "Tax": 0.12 },
 { "ID": 7, ..., "Amount": 1, "Tax": 0.14 },
 { "ID": 8, ..., "Amount": 2, "Tax": 0.28 }
]
}
Transformation orderby
The orderby transformation takes an expression that could also be passed as a $orderby system query option and returns the instances of the input set in the same order $orderby would produce for the given expression. A service supporting this transformation MUST at least offer sorting by property paths, including dynamic properties, with both suffixes asc and desc.
Example 33:
GET ~/Sales?$apply=groupby((Product/Name),
 aggregate(Amount with sum as Total))
 /orderby(Total desc)
results in
{
 "@odata.context": "$metadata#Sales(Product(Name),Total)",
 "value": [
 { "Product": { "Name": "Coffee" }, "Total": 12, ... },
 { "Product": { "Name": "Paper" }, "Total": 8, ... },
 { "Product": { "Name": "Sugar" }, "Total": 4, ... }
]
}
The result set of orderby has the same structure as the input set.
Transformation top
The top transformation takes a non-negative integer n as argument and returns the first n entities of the input set, if the input set contains more than n entities, otherwise the entire input set. The entities in the result are in the same order as they occur in the input set.
The transformations preceding top in the sequence must first produce a certain order among the entities, and then keep this order stable for the input set of top.
Example 34:
GET ~/Sales?$apply=orderby(Customer/Name desc)/top(2)
results in
{
 "@odata.context": "$metadata#Sales"
 "value": [
 { "ID": 4, "Amount": 8, ... },
 { "ID": 5, "Amount": 4, ... }
]
}
Transformation skip
The skip transformation takes a non-negative integer n as argument that excludes the first n entities of the input set from the result. It returns all remaining entities in the same order as they occur in the input set.
The transformations preceding skip in the sequence must first produce a certain order among the entities, and then keep this order stable for the input set of skip.
Example 35:
GET ~/Sales?$apply=orderby(Customer/Name desc)/skip(2)/top(2)
results in
{
 "@odata.context": "$metadata#Sales"
 "value": [
 { "ID": 6, "Amount": 2, ... },
 { "ID": 7, "Amount": 1, ... }
]
}
Transformation nest
The nest transformation takes a comma-separated list of one or more nest expressions as parameters. A nest expression is a sequence of set transformations, followed by the as keyword, followed by a SimpleIdentifier (see [OData-CSDL, section 17.2]) , called an alias. This alias MUST NOT collide with names of properties in the input set or with other aliases introduced in the same nest transformation.
The result set consists of a single entity having one dynamic property per nest expression. The name of the added property is the alias following the as keyword. The value of the property is the result collection of the transformation sequence in the nest expression applied to the input set.
Example 35:
GET Sales?$apply = groupby((Product/Category/ID),
 nest(groupby((Customer/ID)) as Customers))
results in
{
"@odata.context":"$metadata#Sales(Product(Category(ID)),Customers(Customer(ID)))",
 "value": [
 { "Product": { "Category": { "ID": "PG1"} },
 "Customers": [{ "Customer": { "ID": "C1"} },
 { "Customer": { "ID": "C2" } },
 { "Customer": { "ID": "C3" } }] },
 { "Product": { "Category": { "ID": "PG2"} },
 "Customers": [{ "Customer": { "ID": "C1"} },
 { "Customer": { "ID": "C2" } },
 { "Customer": { "ID": "C3" } }] }
]
}
[bookmark: _Toc492655061]Filter Function isdefined
Properties that are not explicitly mentioned in aggregate or groupby are considered to have been aggregated away and are treated as having the null value in $filter expressions.
The filter function isdefined can be used to determine whether a property has been aggregated away. It takes a single-valued property path as its only parameter and returns true if the property has a defined value for the aggregated entity. A property with a defined value can still have the null value; it can represent a grouping of null values, or an aggregation that results in a null value.	Comment by Gerald Krause: ODATA-1372
Example 3633:Product has been aggregated away, causing an empty result
GET ~/Sales?$apply=aggregate(Amount with sum as Total)
 &$filter=isdefined(Product)
results in
{
 "@odata.context": "$metadata#Sales(Total)",
 "value": []
}
[bookmark: _Evaluating_$apply][bookmark: _Toc362428738][bookmark: _Toc376977453][bookmark: sec_Evaluatingapply]Function aggregate	Comment by Gerald Krause: ODATA-1244
Change already reflected in ABNF
The aggregate function allows to use aggregated values in expressions. It takes a single parameter accepting an aggregate-function expression and returns the aggregated value of type Edm.PrimitiveType as the result from applying the aggregate-function expression on an input collection provided by the context.
An aggregate-function expression offers the same capabilities as an aggregate expression defined for the aggregate transformation except that it does not support aggregation on related entities, and it never includes an alias for introducing a dynamic property containing the aggregated value.
The function can be applied in any context accepting an expression. Within $apply, the function is applied as part of an argument expression to a transformation, and the input set of that transformation is the input collection for the function. Outside of $apply, the function may be applied in requests querying collections in an argument expression for a system query option and a lambda operator. Inside a system query option, the collection on which it operates is used as input collection for the function. This is also valid for nested query options used as arguments, like $filter in $expand. Inside a lambda predicate expression the input collection for the aggregate function depends on the path prefix used in the aggregateFunctionExpr (see [OData-Agg-ABNF]): For a path expression starting with the lambda variable the input collection is given by the target of the navigation path prepended to the lambda operator; for a path expression starting with $it the collection addressed by the resource path is the input collection; for other path expressions the input collection is given by the collection of instances at the origin of the navigation path prepended to the lambda operator.
Example 36:
GET ~/Products?$filter=Sales/any(p:aggregate(p/Amount with sum) gt 5)
results in
{
 "@odata.context": "$metadata#Product",
 "value": [
 { "ID": "P2", ... },
 { "ID": "P3", ... }
]
}

Transformations join and outerjoin	Comment by Heiko Theißen: Whole new section: ODATA-1409
[bookmark: _Hlk54683027]	Comment by Krause, Gerald: @Theissen, HeikoIch hielte es für das Verständnis wichtig, an dieser Stelle die Funktionsweise zu beschreiben, dass diese trafo hauptsächlich für die Expansion von collection-valued navprops gedacht ist und die entities ds input set dafür „auffächert“ (fan-out)

Wir können damit auch die aggregate-trafo präzisieren und nur noch Pfade mit single-valued nav props zulassen!	Comment by Heiko Theißen: Können wir schreiben, nachdem das TC sich grundsätzlich für diese neue Transformation ausgesprochen hat.	Comment by Krause, Gerald: @Theissen, HeikoKann bei dem Vorschlag aus meinem Kommentar oben entfallen

	Comment by Krause, Gerald: @Theissen, HeikoZur Veranschaulichung

The join and the outerjoin transformation takes a property path as its first parameter. A path may consist of a sequence of navigation and complex properties. The optional second parameter specifies a transformation sequence.
The statements made in this paragraph remain true if join is replaced with outerjoin. For a property path s=p/q, where p is a property and q is a property path, join(s, T) is recursively defined as join(p, join(q, T)). If T is not given, it is set to identity.

For a property p and transformation sequence T, the result set of join(p, T) is determined by the following steps.:
1. Ensure that p is addressable for all instances of the input set and if it is a navigation property that its target can be dereferenced, otherwise reject the request.
2. Start with an empty result set.
3. For each entity e in the input set:
a. Form a new "nested input set" from the instance(s) identified by p.
b. Apply transformation sequence T to the nested input set from step (a). In case of an outerjoin, if the intermediate result is empty, add a null instance to it.
c. [bookmark: _Hlk54697170]For each instance r in the intermediate result of step (b), add an instance to the result set that is a clone of e with a dynamic complex property with name p and value r.	Comment by Krause, Gerald: @Theissen, Heiko neu: Das ist ein inner join. Brauchen wir auch outer join? (ich sehe keinen use case dafür in der laufenden Diskusssion)	Comment by Heiko Theißen: Lässt sich durch einen Zusatz in 3b erreichen.

The dynamic property p that is added in step (3c) is represented in the context URL as a member of the {select-list} of a projected entity [OData-Protocol, section 10.8].
Its name p is followed by a cardinality-cast [1] in order to indicate its cardinality, which can deviate from the cardinality implied by the $metadata.
Alternative to previous paragraph: The fact that p is not collection-valued (as the $metadata might imply) is expressed through an additional Control Information odata.join-context whose value is a comma-separated list of paths in the context URL whose final segment has been given cardinality 1 by a join or outerjoin transformation.

Note that join(s, T) is equivalent to expand(s, T)/join(s).
Evaluating $apply
The new system query option $apply is evaluated first, then the other system query options are evaluated, if applicable, on the result of $apply in their normal order (see [OData-Protocol, section 11.2.1]). If the result is a collection, $filter, $orderby, $expand and $select work as usual on properties that are defined on the output set after evaluating $apply.
Properties that have been aggregated away in a result entity are not represented, even if the properties are listed in $select or $expand. In $filter they are treated as having the null value, and in $orderby as having a value that is even lower than null, i.e. instances for which a property has been rolled up appear before instances that have a null value for that property when ordering ascending. In subsequent transformations, they are treated like in $filter as having the null value.	Comment by Gerald Krause: ODATA-1161
On resource paths ending in /$count the system query option $apply is evaluated on the set identified by the resource path without the /$count segment, the result is the plain-text number of items in the result of $apply. This is similar to the combination of /$count and $filter.
The $count system query option is evaluated after $apply, the annotation @odata.count contains the number of items in the result of $apply.
Providers MAY support $count, $top and $skip together with rollup, in which case rollup instances are counted identically to detail instances, i.e. $skip=5 skips the first five instances, independently of whether some of them are rollup entities.
If a provider cannot satisfy a request using $apply, it MUST respond with 501 Not Implemented and a human-readable error message.
[bookmark: _Toc492655063]Evaluating $apply as an Expand Option
The new system query option $apply can be used as an expand option to inline the result of aggregating related entities. The rules for evaluating $apply are applied in the context of the expanded navigation, i.e. $apply is evaluated first, and other expand options on the same navigation property are evaluated on the result of $apply.
Example 3734: products with aggregated sales:
GET Products?$expand=Sales($apply=aggregate(Amount with sum as Total))
results in
{
 "@odata.context":"$metadata#Products(Salees(AmountTotal))",	Comment by Michael Pizzo: OData-1307
 "value": [
 { "Name": "Coffee", "Color": "Brown", "TaxRate": 0.06,
 "Sales": [{ "@odata.id": null, "Total": 12, ... }] },
 { "Name": "Paper", "Color": "White", "TaxRate": 0.
14, 	Comment by Gerald Krause: ODATA-1137
 "Sales": [{ "@odata.id": null, "Total": 8, ... }] },
 { "Name": "Pencil", "Color": "Black", "TaxRate": 0.14, 	Comment by Gerald Krause: ODATA-1137
 "Sales": [{ "@odata.id": null, "Total": null }] },
 { "Name": "Sugar", "Color": "White", "TaxRate": 0.06,
 "Sales": [{ "@odata.id": null, "Total": 4, ... }] }
] 	Comment by Gerald Krause: ODATA-1137
}
[bookmark: _Toc492655064]ABNF for Extended URL Conventions
The normative ABNF construction rules for this specification are defined in [OData-Agg-ABNF]. They incrementally extend the rules defined in [OData-ABNF].
[bookmark: _Toc492655065][bookmark: _Ref41489062]Representation of Aggregated Instances
Aggregated instances are based on the structure of the individual instances from which they have been calculated, so the structure of the results fits into the data model of the service.
Properties that have been aggregated away are not represented at all in the aggregated instances.
Dynamic properties introduced through an alias, through transformation nest or with custom aggregates are represented as defined by the response format. In particular, this includes a type annotation as additional control information to disambiguate the type of the represented value where required by the response format.	Comment by Gerald Krause: ODATA-1169	Comment by Gerald Krause: ODATA-1137
Aggregated instances are logically instances of the declared type of the collection identified by the resource path of the request. If the resource path identifies a collection of entities, the aggregated instances are also entities. These aggregated entities can be transient or persistent. Transient entities don’t possess an edit link or read link, and in the JSON representation of OData 4.0 payloads are marked with "@odata.id": null, which can be omitted in 4.01 payloads, see [OData-JSON]. Edit links or read links of persistent entities MUST encode the necessary information to re-retrieve that particular aggregate value. How the necessary information is exactly encoded is not part of this specification. Only the boundary conditions defined in [OData-Protocol], sections 4.1 and 4.2 MUST be met.	Comment by Gerald Krause: ODATA-1279
The context URL describes the superset of properties occurring in entities of the aggregated result set.	Comment by Gerald Krause: ODATA-1159
Example 3835: looking again to the sample request for getting sales amounts per product and country presented in section 3.10.1 (Example 24Example 24):
GET ~/Sales?$apply=groupby((Customer/Country,Product/Name),
 aggregate(Amount with sum as Total))
will return corresponding metadata as shown here for a single transient aggregated entity:
{
 "@odata.context":"$metadata#Sales(Customer(Country),Product(Name),Total)",
 "value": [
 { "@odata.id": null,
 "Customer": { "Country": "Netherlands" },
 "Product": { "Name": "Paper" },
 "Total": 3, ... 	Comment by Gerald Krause: ODATA-1137
 },
 ...
]
}
[bookmark: _Toc492655066]Cross-Joins and Aggregation
OData supports querying related entities through defining navigation properties in the data model. These navigation paths help guide simple consumers in understanding and navigating relationships.
In some cases, however, requests need to span entity sets with no predefined associations. Such requests can be sent to the special resource $crossjoin instead of an individual entity set. The cross join of a list of entity sets is the Cartesian product of the listed entity sets, represented as a collection of complex type instances that have a navigation property with cardinality to-one for each participating entity set, and queries across entity sets can be formulated using these navigation properties. See [OData-URL] for details.
Where useful navigations exist it is beneficial to expose those as explicit navigation properties in the model, but the ability to pose queries that span entity sets not related by an association provides a mechanism for advanced consumers to use more flexible join conditions.
Example 3936: if Sales had a string property ProductID instead of the navigation property Product, a “join” between Sales and Products could be accessed via the $crossjoin resource
GET ~/$crossjoin(Products,Sales)
 ?$expand=Products($select=Name),Sales($select=Amount)
 &$filter=Products/ID eq Sales/ProductID
results in
{
 "@odata.context": "$metadata#Collection(Edm.ComplexType)",
 "value": [
 { "Products": { "Name": "Paper" }, "Sales": { "Amount": 1 } },
 { "Products": { "Name": "Sugar" }, "Sales": { "Amount": 2 } },
 ...
]
}
Example 4037: using the $crossjoin resource for aggregate queries
GET ~/$crossjoin(Products,Sales)
 ?$apply=filter(Products/ID eq Sales/ProductID)
 /groupby((Products/Name),
 aggregate(Sales(Amount with sum as Total)))
results in
{
 "@odata.context": "$metadata#Collection(Edm.ComplexType)",
 "value": [
 { "Products": { "Name": "Coffee" }, "Sales": { "Total": 12, ... } },
 { "Products": { "Name": "Paper" }, "Sales": { "Total": 8, ... } },
 { "Products": { "Name": "Sugar" }, "Sales": { "Total": 4, ... } }
]	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137
}
The entity container may be annotated in the same way as entity sets to express which aggregate queries are supported, see section 6.
[bookmark: _Toc492655067]Vocabulary for Data Aggregation
The following terms are defined in the vocabulary for data aggregation [OData-VocAggr].
[bookmark: _Toc492655068]Aggregation Capabilities
The term ApplySupported can be applied to an entity container or to structured types and describes the aggregation capabilities of the entity container or of collections of instances of the annotated structured types. If present, it implies that instances of the annotated structured type, or of structured types used in the annotated entity container, can contain dynamic properties as an effect of $apply even if they do not specify the OpenType attribute, see [OData-CSDL]. The term has a complex type with the following properties:
· [bookmark: _Toc339034386][bookmark: _Toc337731809][bookmark: _Ref353290823][bookmark: _Toc353294835][bookmark: _Toc353294887][bookmark: _Toc353377485][bookmark: _Toc353390987]The Transformations collection lists all supported set transformations. Allowed values are the names of the standard transformations introduced in section 3Allowed values are the names of the standard transformations aggregate, topcount, topsum, toppercent, bottomcount, bottomsum, bottompercent, identity, concat, groupby, filter, and expand, or a and namespace-qualified names identifying a service-defined bindable function. If Transformations is omitted the server supports all transformations defined by this specification.	Comment by Gerald Krause: ODATA-1186
· The CustomAggregationMethods collection lists supported custom aggregation methods. Allowed values are namespace-qualified names identifying service-specific aggregation methods. If omitted, no custom aggregation methods are supported.
· Rollup specifies whether the service supports no rollup, only a single rollup hierarchy, or multiple rollup hierarchies in a groupby transformation. If omitted, multiple rollup hierarchies are supported.
· PropertyRestrictions specifies whether all properties can be used in groupby and aggregate. If not specified, or specified with a value of false, all properties can be grouped and aggregated. If specified with a value of true clients have to check which properties are tagged as Groupable or Aggregatable.
All properties of ApplySupported are optional, so it can be used as a tagging annotation to signal unlimited support of aggregation.
Example 4138: an entity container supporting everything defined in this specification.
<EntityContainer Name="SalesData">
 <Annotation Term="Aggregation.ApplySupported" />
 ...
</EntityContainer>
[bookmark: _Toc492655069]Property Annotations
[bookmark: _Toc492655070]Groupable Properties
If a structured type is annotated with ApplySupported or used within an entity container that is annotated with ApplySupported, and the ApplySupported annotation has a value of true for PropertyRestrictions, only those properties that are annotated with the tagging term Groupable can be used in groupby.
[bookmark: _Toc492655071]Aggregatable Properties
If a structured type is annotated with ApplySupported or used within an entity container that is annotated with ApplySupported, and the ApplySupported annotation has a value of true for PropertyRestrictions, only those properties that are annotated with the tagging term Aggregatable can be used in aggregate.
[bookmark: _Toc375242620][bookmark: _Toc375310237][bookmark: _Toc375225466][bookmark: _Toc375225550][bookmark: _Toc375225467][bookmark: _Toc375225551][bookmark: _Toc375225468][bookmark: _Toc375225552][bookmark: _Toc375136839][bookmark: _Toc375136954][bookmark: _Toc375225469][bookmark: _Toc375225553][bookmark: _Toc375136840][bookmark: _Toc375136955][bookmark: _Toc375225470][bookmark: _Toc375225554][bookmark: _Toc375136841][bookmark: _Toc375136956][bookmark: _Toc375225471][bookmark: _Toc375225555][bookmark: _Toc374645796][bookmark: _Toc374961104][bookmark: _Toc375063251][bookmark: _Toc375063321][bookmark: _Toc375136842][bookmark: _Toc375136957][bookmark: _Toc375225472][bookmark: _Toc375225556][bookmark: _Toc374610398][bookmark: _Toc374610937][bookmark: _Toc374621136][bookmark: _Toc374626143][bookmark: _Toc374626264][bookmark: _Toc374610399][bookmark: _Toc374610938][bookmark: _Toc374621137][bookmark: _Toc374626144][bookmark: _Toc374626265][bookmark: _Toc374610400][bookmark: _Toc374610939][bookmark: _Toc374621138][bookmark: _Toc374626145][bookmark: _Toc374626266][bookmark: _Toc374610401][bookmark: _Toc374610940][bookmark: _Toc374621139][bookmark: _Toc374626146][bookmark: _Toc374626267][bookmark: _Toc374610402][bookmark: _Toc374610941][bookmark: _Toc374621140][bookmark: _Toc374626147][bookmark: _Toc374626268][bookmark: _Toc374610403][bookmark: _Toc374610942][bookmark: _Toc374621141][bookmark: _Toc374626148][bookmark: _Toc374626269][bookmark: _Toc374610404][bookmark: _Toc374610943][bookmark: _Toc374621142][bookmark: _Toc374626149][bookmark: _Toc374626270][bookmark: _Toc362341149][bookmark: _Toc362342851][bookmark: _Dynamic_Aggregatable_Properties][bookmark: _Custom_Aggregates][bookmark: _Custom_Dynamic_Aggregatable][bookmark: _Custom_Aggregation_Methods][bookmark: _Toc374645798][bookmark: _Toc374961106][bookmark: _Toc375063253][bookmark: _Toc375063323][bookmark: _Toc375136844][bookmark: _Toc375136958][bookmark: _Toc375225473][bookmark: _Toc375225557][bookmark: _Toc374645799][bookmark: _Toc374961107][bookmark: _Toc375063254][bookmark: _Toc375063324][bookmark: _Toc375136845][bookmark: _Toc375136959][bookmark: _Toc375225474][bookmark: _Toc375225558][bookmark: _Toc374645800][bookmark: _Toc375063255][bookmark: _Toc375063325][bookmark: _Toc375136846][bookmark: _Toc375136960][bookmark: _Toc375225475][bookmark: _Toc375225559][bookmark: _Custom_Dynamic_Aggregatable_1][bookmark: _Custom_AggregatesDynamic_Aggregatab][bookmark: _Toc362428744][bookmark: _Toc376977462][bookmark: sec_CustomAggregates]Supported Aggregation Methods	Comment by Gerald Krause: ODATA-1072
PR
If a structured type is annotated with ApplySupported or used within an entity container that is annotated with ApplySupported, all aggregation methods can be applied to an aggregatable property by default unless it is annotated with SupportedAggregationMethods that lists the subset of those aggregation methods that the service supports for this property.
Recommended Aggregation Method	Comment by Gerald Krause: ODATA-1072
If a structured type is annotated with ApplySupported or used within an entity container that is annotated with ApplySupported, the service may advertise a recommended aggregation method for an aggregatable property to the consumer by annotating it with RecommendedAggregationMethod.
Custom Aggregates
The term CustomAggregate allows defining dynamic properties that can be used in aggregate. No assumptions can be made on how the values of these custom aggregates are calculated, and which input values are used.
When applied to a structured type, the annotation specifies custom aggregates that are available for collections of instances of that structured type. When applied to an entity container, the annotation specifies custom aggregates whose input set may span multiple entity sets within the container.
A custom aggregate is identified by the value of the Qualifier attribute when applying the term. The value of the Qualifier attribute is the name of the dynamic property. The name MUST NOT collide with the names of other custom aggregates of the same model element.
The value of the annotation is a string with the qualified name of a primitive type or type definition in scope that specifies the type returned by the custom aggregate.
If the custom aggregate is associated with a structured type, the value of the Qualifier attribute MAY be identical to the name of a declared property of the structured type. In this case, the value of the annotation MUST have the same value as the Type attribute of the declared property. This is typically done when the custom aggregate is used as a default aggregate for that property. In this case, the name refers to the custom aggregate within an aggregate expression without a with clause, and to the property in all other cases.
If the custom aggregate is associated with an entity container, the value of the Qualifier attribute MUST NOT collide with the names of any entity sets defined in the entity container.
Example 4239: Sales forecasts are modeled as a custom aggregate of the Sales entity type because it belongs there. For the budget, there is no appropriate structured type, so it is modeled as a custom aggregate of the SalesData entity container.
<Annotations Target="SalesModel.Sales">
 <Annotation Term="Aggregation.CustomAggregate" Qualifier="Forecast"
 String="Edm.Decimal" />
</Annotations>

<Annotations Target="SalesModel.SalesData">
 <Annotation Term="Aggregation.CustomAggregate" Qualifier="Budget"
 String="Edm.Decimal" />
</Annotations>
These custom aggregates can be used in the aggregate transformation:
GET ~/Sales?$apply=groupby((Time/Month),aggregate(Forecast))
and:
GET ~/$crossjoin(Time)?$apply=groupby((Time/Year),aggregate(Budget))
[bookmark: _Toc492655073]Context-Defining Properties
Sometimes the value of a property or custom aggregate is only well-defined within the context given by values of other properties, e.g. a postal code together with its country, or a monetary amount together with its currency unit. These context-defining properties can be listed with the term ContextDefiningProperties whose type is a collection of property paths.
If present, the context-defining properties SHOULD be used as grouping properties when aggregating the annotated property or custom aggregate, or alternatively be restricted to a single value by a pre-filter operation. Services MAY respond with 400 Bad Request if the context-defining properties are not sufficiently specified for calculating a meaningful aggregate value.
[bookmark: _Toc492655074]Annotation Example
Example 4340: This simplified Sales entity type has a single aggregatable property Amount whose context is defined by the Code property of the related Currency, and a custom aggregate Forecast with the same context. The Code property of Currency is groupable. All other properties are neither groupable nor aggregatable.
<EntityType Name="Currency">
 <Key>
 <PropertyRef Name="Code" />
 </Key>
 <Property Name="Code" Type="Edm.String">
 <Annotation Term="Aggregation.Groupable" />
 </Property>
 <Property Name="Name" Type="Edm.String">
 <Annotation Term="Core.IsLanguageDependent" />
 </Property>
</EntityType>

<EntityType Name="Sales">
 <Key>
 <PropertyRef Name="ID" />
 </Key>
 <Property Name="ID" Type="Edm.String" Nullable="false" />

 <Property Name="Amount" Type="Edm.Decimal" Scale="variable">
 <Annotation Term="Aggregation.Aggregateable" />
 <Annotation Term="Aggregation.ContextDefiningProperties">
 <Collection>
 <PropertyPath>Currency/Code</PropertyPath>
 </Collection>
 </Annotation>
 </Property>

 <NavigationProperty Name="Currency" Type="SalesModel.Currency"
 Nullable="false">
 <Annotation Term="Aggregation.Groupable" />
 </NavigationProperty>

 <Annotation Term="Aggregation.CustomAggregate" Qualifier="Forecast"
 String="Edm.Decimal">
 <Annotation Term="Aggregation.ContextDefiningProperties">
 <Collection>
 <PropertyPath>Currency/Code</PropertyPath>
 </Collection>
 </Annotation>
 </Annotation>
</EntityType>

<EntityContainer Name="SalesData">
 <Annotation Term="Aggregation.ApplySupported">
 <Record>
 <PropertyValue Property="PropertyRestrictions" Bool="true" />
 </Record>
 </Annotation>	

 <EntitySet Name="Sales" EntityType="SalesModel.Sales" />
 <EntitySet Name="Currencies" EntityType="SalesModel.Currency" /> </EntityContainer>
[bookmark: _Toc492655075]Hierarchies
A hierarchy is an arrangement of groupable properties whose values are represented as being “above”, “below”, or “at the same level as” one another. A hierarchy can be leveled or recursive.
[bookmark: _Toc492655076]Leveled Hierarchy
A leveled hierarchy has a fixed number of levels each of which is represented by a groupable property. The values of a lower-level property depend on the property value of the level above.
A leveled hierarchy of an entity type is described with the term LeveledHierarchy that lists the properties used to form the hierarchy.
The order of the collection is significant: it lists the properties representing the levels, starting with the root level (coarsest granularity) down to the lowest level of the hierarchy.
The term LeveledHierarchy can only be applied to entity types, and the applying Annotation element MUST specify the Qualifier attribute. The value of the Qualifier attribute can be used to reference the hierarchy in grouping with rollup.
[bookmark: _Toc492655077]Recursive Hierarchy
A recursive hierarchy organizes the values of a single groupable property as nodes of a tree structure. This structure does not need to be as uniform as a leveled hierarchy. It is described by a complex term RecursiveHierarchy with the properties:
· The NodeProperty contains the path to the identifier of the node.
· The ParentNavigationProperty allows navigation to the entity representing the parent node.
· The optional ChildrenNavigationProperty allows navigation to the entities representing the children nodes.	Comment by Gerald Krause: ODATA-839
PR
· The optional DistanceFromRootProperty contains the path to a property that contains the number of edges between the node and the root node.
· The optional IsLeafProperty contains the path to a Boolean property that indicates whether the node is a leaf of the hierarchy.
The term RecursiveHierarchy can only be applied to entity types, and the applying Annotation element MUST specify the Qualifier attribute. The value of the Qualifier attribute can be used to reference the hierarchy in Hierarchy Filter FunctionsHierarchy Functions.	Comment by Gerald Krause: ODATA-1372
[bookmark: _Toc492655078]Hierarchy Filter Functions
For testing the position of a given entity instance in a recursive hierarchy annotated to the entity’s type, the Aggregation vocabulary defines functions that can be applied to any entity in $filter expressions:	Comment by Gerald Krause: ODATA-1372
· isroot returns true if and only if the value of the node property of the specified hierarchy is the root of the hierarchy,
· isdescendant returns true if and only if the value of the node property of the specified hierarchy is a descendant of the given parent node with a distance of less than or equal to the optionally specified maximum distance or, if selected, optionally the parent node itself,	Comment by Gerald Krause: ODATA-1142	Comment by Gerald Krause: ODATA-1136
PR
· isancestor returns true if and only if the value of the node property of the specified hierarchy is an ancestor of the given child node with a distance of less than or equal to the optionally specified maximum distance or, if selected, optionally the child node itself,	Comment by Gerald Krause: ODATA-1142
PR	Comment by Gerald Krause: ODATA-1136
· issibling returns true if and only if the value of the node property of the specified hierarchy has the same parent node as the specified node,
· isleaf returns true if and only if the value of the node property of the specified hierarchy has no descendants.
[bookmark: _Toc492655079]Hierarchy Examples
Example 4441: leveled hierarchies for products and time, and a recursive hierarchy for the sales organizations
<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx"
 Version="4.0">
 <edmx:Reference Uri="http://docs.oasis-open.org/odata/odata-data-aggregation-ext/v4.0/cs01/vocabularies/Org.OData.Aggregation.V1.xml">
 <edmx:Include Alias="Aggregation"
 Namespace="Org.OData.Aggregation.V1" />
 </edmx:Reference>
 <edmx:DataServices>
 <Schema xmlns="http://docs.oasis-open.org/odata/ns/edm"
 Alias="SalesModel" Namespace="org.example.odata.salesservice">
 <Annotations Target="SalesModel.Product">
 <Annotation Term="Aggregation.LeveledHierarchy"
 Qualifier="ProductHierarchy">
 <Collection>
 <PropertyPath>Category/Name</PropertyPath>
 <PropertyPath>Name</PropertyPath>
 </Collection>
 </Annotation>
 </Annotations>

 <Annotations Target="SalesModel.Time">
 <Annotation Term="Aggregation.LeveledHierarchy"
 Qualifier="TimeHierarchy">
 <Collection>
 <PropertyPath>Year</PropertyPath>
 <PropertyPath>Quarter</PropertyPath>
 <PropertyPath>Month</PropertyPath>
 </Collection>
 </Annotation>
 </Annotations>

 <Annotations Target="SalesModel.SalesOrganization">
 <Annotation Term="Aggregation.RecursiveHierarchy"
 Qualifier="SalesOrgHierarchy">
 <Record>
 <PropertyValue Property="NodeProperty"
 PropertyPath="ID" />
 <PropertyValue Property="ParentNavigationProperty"
 PropertyPath="Superordinate" />
 </Record>
 </Annotation>
 </Annotations>
 </Schema>
 </edmx:DataServices>
</edmx:Edmx>
The recursive hierarchy SalesOrgHierarchy can be used in functions with the $filter system query option.
Example 4542: requesting all organizations below EMEA
GET ~/SalesOrganizations?
 $filter=
 $it/Aggregation.isdescendant(Hierarchy='SalesOrgHierarchy',Node='EMEA')
results in
{
 "@odata.context": "$metadata#SalesOrganizations",
 "value": [
 { "ID": "EMEA Central", "Name": "EMEA Central" },
 { "ID": "Sales Netherland", "Name": "Sales Netherland" },
 { "ID": "Sales Germany", "Name": "Sales Germany" },
 { "ID": "EMEA South", "Name": "EMEA South" },
 ...
 { "ID": "EMEA North", "Name": "EMEA North" },
 ...
]
}
Example 4643: requesting just those organizations directly below EMEA
GET SalesOrganizations?$filter=
 $it/Aggregation.isdescendant(Hierarchy='SalesOrgHierarchy',
 Node='EMEA',MaxDistance=1)
results in
{
 "@odata.context": "$metadata#SalesOrganizations",
 "value": [
 { "ID": "EMEA Central", "Name": "EMEA Central" },
 { "ID": "EMEA South", "Name": "EMEA South" },
 { "ID": "EMEA North", "Name": "EMEA North" },
 ...
]
}
Example 4744: just the lowest-level organizations
GET SalesOrganizations?$filter=
 $it/Aggregation.isleaf(Hierarchy='SalesOrgHierarchy')
results in
{
 "@odata.context": "$metadata#SalesOrganizations",
"value": [
 { "ID": "Sales Office London", "Name": "Sales Office London" },
 { "ID": "Sales Office New York", "Name": "Sales Office New York" },
 ...
]
}
Example 4845: the lowest-level organizations including their superordinate's ID
GET SalesOrganizations?$filter=
 $it/Aggregation.isleaf(Hierarchy='SalesOrgHierarchy')
 &$expand=Superordinate($select=ID)
results in
{
 "@odata.context": "$metadata#SalesOrganizations(*,Superordinate(ID))",
 "value": [
 { "ID": "Sales Office London", "Name": "Sales Office London",
 "Superordinate: { "ID": "EMEA United Kingdom" } },
 { "ID": "Sales Office New York", "Name": "Sales Office New York",
 "Superordinate: { "ID": "US East" } },
 ...
]
}
Example 4946: retrieving the sales IDs involving sales organizations from EMEA can be requested by
GET Sales?$select=ID&$filter=
 SalesOrganization/Aggregation.isdescendant(Hierarchy='SalesOrgHierarchy',
 Node='EMEA')
[bookmark: _Toc354668974]results in
{
 "@odata.context": "$metadata#Sales(ID)",
 "value": [
 { "ID": 6 },
 { "ID": 7 },
 { "ID": 8 }
]
}
[bookmark: _Toc492655080]Actions and Functions on Aggregated Entities
Bound actions and functions may or may not be applicable to aggregated entities. By default such bindings are not applicable to aggregated entities. Actions or functions annotated with the term AvailableOnAggregates are applicable to (a subset of the) aggregated entities under specific conditions:
· The RequiredProperties collection lists all properties that must be available in the aggregated entities; otherwise, the annotated function or action will be inapplicable.
Example 5047: assume the product is an implicit input for a function bindable to Sales, then aggregating away the product makes this function inapplicable.
Calculating a set of aggregated entities and invoking an action on them cannot be accomplished with a single request, because the action URL cannot be constructed by the client. It is also impossible to construct a URL that calculates a single aggregated entity and applies a function or action on it. Consequently, applicable bound actions or functions on a single aggregated entity, or bound actions on a collection of aggregated entities MUST be advertised in the response to make them available to clients. A client is then able to request the aggregated entities in a first request and invoke the action or function in a follow-up request using the advertised target URL.
Example 5148: full representation of an action applicable to a collection of aggregated entities, and an action that is applicable to one of the entities in the collection. The string <properties in $apply> is a stand-in for the list of properties describing the shape of the result set
{
"@odata.context": "$metadata#Sales(<properties in $apply>)",
"@odata.readLink": "http://.../aggregated-stuff2143248437259843",
"#Model.ColAction": {
 "title": "Do something on this collection",
 "target": "http://.../aggregated-stuff2143248437259843/Model.ColAction"
 },
"value": [
 {
 "@odata.id": "aggregated-stuff2143248437259843-1",
 "#Model.SingleAction": {
 "title": "Do something on this entity",
 "target":
 "http://.../aggregated-stuff2143248437259843-1/Model.SingleAction"
 },
 ...
 },
 ...
]
}
[bookmark: _Toc353453213][bookmark: _Toc287332011][bookmark: _Toc337731839][bookmark: _Toc353294839][bookmark: _Toc353294891][bookmark: _Toc353377489][bookmark: _Toc353390991][bookmark: _Rollup_Instances]Services advertising the availability of functions or actions via the term AvailableOnAggregates MUST provide read links or edit links for aggregated entities, see section 4.
[bookmark: _Toc492655081]Examples
The following examples show some common aggregation-related questions that can be answered by combining the transformations defined in chapter 3.
[bookmark: _Toc492655082]Requesting Distinct Values
Grouping without specifying a set transformation returns the distinct combination of the grouping properties.
Example 5249:
GET ~/Customers?$apply=groupby((Name))
results in
{
 "@odata.context": "$metadata#Customers(Name)",
 "value": [
 { "@odata.id": null, "Name": "Luc" },
 { "@odata.id": null, "Name": "Joe" },
 { "@odata.id": null, "Name": "Sue" }
]
}
Note that "Sue" appears only once although the customer base contains two different Sues.
Aggregation is also possible across related entities.
Example 5350: customers that bought something
GET ~/Sales?$apply=groupby((Customer/Name))
results in
{
 "@odata.context": "$metadata#Sales(Customer(Name))",
 "value": [
 { "@odata.id": null, "Customer": { "Name": "Joe" } },
 { "@odata.id": null, "Customer": { "Name": "Sue" } }
]
}
The result has the same structure as a standard OData request that expands the navigation properties and selects the data properties specified in groupby and aggregate.
GET ~/Sales?$expand=Customer($select=Name)
Note that "Luc" does not appear in the aggregated result as he hasn’t bought anything and therefore there are no sales entities that refer/navigate to Luc.
However, even though both Sues bought products, only one "Sue" appears in the aggregate result. Including properties that guarantee the right level of uniqueness in the grouping can repair that.
Example 5451:
GET ~/Sales?$apply=groupby((Customer/Name,Customer/ID))
results in
{
 "@odata.context": "$metadata#Sales(Customer(Name,ID))",
 "value": [
 { "@odata.id": null, "Customer": { "Name": "Joe", "ID": "C1" } },
 { "@odata.id": null, "Customer": { "Name": "Sue", "ID": "C2" } },
 { "@odata.id": null, "Customer": { "Name": "Sue", "ID": "C3" } }
]
}
This could also have been formulated as
GET ~/Sales?$apply=groupby((Customer))
 &$expand=Customer($select=Name,ID)
Example 54: Grouping by navigation property Customer is treated as groupby((Customer/$ref))	Comment by Gerald Krause: ODATA-971
GET ~/Sales?$apply=groupby((Customer))
results in
{
 "@odata.context": "$metadata#Sales(Customer)",
 "value": [
 { "Customer": { "@odata.id": "Customers('C1')" } },
 { "Customer": { "@odata.id": "Customers('C2')" } },
 { "Customer": { "@odata.id": "Customers('C3')" } }
]
}
Grouping by a navigation property adds the deferred representation of the navigation property to the result structure, which then can be expanded and projected partially away using the standard query options $expand and $select.	Comment by Gerald Krause:
Note: the typical representation of a deferred navigation property is a URL “relative” to the source entity, e.g. ~/Sales(1)/Customer. This has the benefit that this URL doesn’t change if the sales entity would be associated to a different customer. For aggregated entities this would actually be a drawback, so the representation MUST be the canonical URL of the target entity, i.e. ~/Customers('C1') for the first entity in the above result.
Example 5552: the first question in the motivating example in section 2.4, which customers bought which products, can now be expressed as
GET ~Sales?$apply=groupby((Customer/Name,Customer/ID,Product/Name))
and results in
{
 "@odata.context": "$metadata#Sales(Customer(Name,ID),Product(Name))",
 "value": [
 { "@odata.id": null, "Customer": { "Name": "Joe", "ID": "C1" },
 "Product": { "Name": "Coffee"} },
 { "@odata.id": null, "Customer": { "Name": "Joe", "ID": "C1" },
 "Product": { "Name": "Paper" } },
 { "@odata.id": null, "Customer": { "Name": "Joe", "ID": "C1" },
 "Product: { "Name: "Sugar" } },
 { "@odata.id": null, "Customer": { "Name": "Sue", "ID": "C2" },
 "Product: { "Name": "Coffee"} },
 { "@odata.id": null, "Customer": { "Name": "Sue", "ID": "C2" },
 "Product": { "Name": "Paper" } },
 { "@odata.id": null, "Customer": { "Name": "Sue", "ID": "C3" },
 "Product": { "Name": "Paper" } },
 { "@odata.id": null, "Customer": { "Name": "Sue", "ID": "C3" },
 "Product": { "Name": "Sugar" } }
]
}
[bookmark: _Toc492655083]Standard Aggregation Methods
The client may specify one of the predefined aggregation methods min, max, sum, average, and countdistinct, or a custom aggregation method, to aggregate an aggregatable property. Expressions defining an aggregate method MUST specify an alias. The aggregated values are returned in a dynamic property whose name is determined by the alias.
Example 5653:
GET ~/Products?$apply=groupby((Name),
 aggregate(Sales/Amount with sum as Total))
results in	Comment by Gerald Krause: ODATA-945
{
 "@odata.context": "$metadata#Products(Name,Sales(Total))",
 "value": [
 { "@odata.id": null, "Name": "Coffee", "Sales": [{ "Total": 12, ... }] },
 { "@odata.id": null, "Name": "Paper", "Sales": [{ "Total": 8, ... }] },
 { "@odata.id": null, "Name": "Pencil", "Sales": [{ "Total": null }] },
 { "@odata.id": null, "Name": "Sugar", "Sales": [{ "Total": 4, ... }] }
]	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137
}
Note that the base set of the request is Products, so there is a result item for product Pencil even though there are no sales item. As aggregate returns exactly one result item even if there are no items to be aggregated, the Sales navigation property’s value is an array with one element representing the sum over no input values, which is null.
Example 5754: careful observers will notice that the above amounts have been aggregated across currencies, which is semantically wrong. Yet it is the correct response to the question asked, so be careful what you ask for. The semantically meaningful question
GET ~/Products?$apply=expand(Sales,groupby((Currency/Code),	Comment by Heiko Theißen: ODATA-1404
 aggregate(Amount with sum as Total)))
GET ~/Products?$apply=groupby((Name,Sales/Currency/Code),
 aggregate(Sales/Amount with sum as Total))
results in
{
[bookmark: _Hlk54936565] "@odata.context": "$metadata#Products(Name,Sales(Total,Currency(Code)))",
 "value": [
 { "@odata.id": null, "Name": "Coffee",
[bookmark: _Hlk55219041] "Sales": [{ "Total": 12, "Currency": { "Code": "USD" }, ... }] },
 { "@odata.id": null, "Name: "Paper",	Comment by Gerald Krause: ODATA-1137
 "Sales": [{ "Total": 3, "Currency": { "Code": "EUR" }, ... },
 { "Total": 5, "Currency": { "Code": "USD" }, ... }] },
 { "@odata.id": null, "Name: "Pencil", 	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137
 "Sales": [] },
 { "@odata.id": null, "Name: "Sugar",
 "Sales": [{ "Total": 2, "Currency": { "Code": "EUR" }, ... },
 { "Total": 2, "Currency": { "Code": "USD" }, ... }] }
]	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137
}
Note that navigation properties are "expanded" in a left-outer-join fashion, starting from the target of the aggregation request, before grouping the entities for aggregationAfterwards the results are “folded back” to match the cardinality of the navigation properties.	Comment by Gerald Krause: ODATA-904
Alternatively, join could be applied to yield a flat structure:	Comment by Heiko Theißen: ODATA-1409
GET ~/Products?$apply=join(Sales,groupby((Currency/Code),
 	 aggregate(Amount with sum as Total)))
 &$select=Name,Sales/Currency/Code,Total

{
 "@odata.context": "$metadata#Products(Name,Sales[1](Total,Currency(Code)))	Comment by Heiko Theißen: This shall indicate that Sales is a single-valued property introduced by a join transformation.
",
 "@odata.join-context": "Products/Sales",
 "value": [
 { "Name": "Coffee",
 "Sales": { "Total": 12, "Currency": { "Code": "USD" } } },
 { "Name: "Paper",
 "Sales": { "Total": 3, "Currency": { "Code": "EUR" } } },
 { "Name: "Paper",
 "Sales": { "Total": 5, "Currency": { "Code": "USD" } } },	Comment by Heiko Theißen: There is no "Pencil" in the result set. Do we also need an outerjoin transformation?
 { "Name: "Sugar",
 "Sales": { "Total": 2, "Currency": { "Code": "EUR" } } },
 { "Name: "Sugar",
 "Sales": { "Total": 2, "Currency": { "Code": "USD" } } }

]
}

Example 5855:
GET ~/Customers?$apply=groupby((Country,Sales/Product/Name))
returns the different products sold per country:
{
 "@odata.context": "$metadata#Customers(Country,Sales(Product(Name)))",
 "value": [
 { "@odata.id": null, "Country": "Netherlands",
 "Sales": [{ "Product": { "Name": "Paper" } },
 { "Product": { "Name": "Sugar" } }] },
 { "@odata.id": null, "Country": "USA",
 "Sales": [{ "Product": { "Name": "Coffee" } },
 { "Product": { "Name": "Paper" } },
 { "Product": { "Name": "Sugar" } }] },
 { "Country": "France", "Sales": [] }	Comment by Gerald Krause: ODATA-904
]
}
Example 5956:
GET ~/Sales?$apply=groupby((Customer/Country),
 aggregate(Amount with average as AverageAmount))
results in
{
 "@odata.context": "$metadata#Sales(Customer(Country),AverageAmount)",
 "value": [
 { "@odata.id": null, "Customer": { "Country": "Netherlands" },
 "AverageAmount": 1.6666667 },
 { "@odata.id": null, "Customer": { "Country": "USA" },
 "AverageAmount": 3.8 }
]
}
If the example model would contain a list of hobbies per customer, with Hobbies a collection of strings, the number of different hobbies across the customer base could be requested. A navigation property followed by a /$count segment is a valid expression in the context that declares the navigation property, so the result property is placed in the same context as the navigation property.
Example 6057:
GET ~/Products?$apply=groupby((Name),
 aggregate(Sales/$count with sum as SalesCount))	Comment by Gerald Krause: ODATA-1255
Change already reflected in ABNF
results in
{
 "@odata.context": "$metadata#Products(Name,SalesCount)",
 "value": [
 { "@odata.id": null, "Name": "Coffee", "SalesCount": 2, ... },
 { "@odata.id": null, "Name": "Paper", "SalesCount": 4, ... },
 { "@odata.id": null, "Name": "Pencil", "SalesCount": 0, ... },
 { "@odata.id": null, "Name": "Sugar", "SalesCount": 2, ... }
]	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137
}
Note that this differs from the placement of an aggregated property in a related entity: the aggregated property has the same navigation path as the original value.
Example 6158: the result properties for Sales/$count and Sales(Amount…) are placed differently
GET ~/Products?$apply=groupby((Name),
 aggregate(Sales/$count with sum as SalesCount,	Comment by Gerald Krause: ODATA-1255
 Sales(Amount with sum as TotalAmount)))
results in
{
 "@odata.context": "$metadata#Products(Name,SalesCount,Sales(TotalAmount))",
 "value": [
 { "@odata.id": null, "Name": "Coffee", "SalesCount": 2, ...,	Comment by Gerald Krause: ODATA-1137
 "Sales": [{ "TotalAmount": 12, ... }] },
 { "@odata.id": null, "Name": "Paper", "SalesCount": 4, ...,
 "Sales": [{ "TotalAmount": 8, ... }] },
 { "@odata.id": null, "Name": "Pencil", "SalesCount": 0, ...,
 "Sales": [{ "TotalAmount": null }] },
 { "@odata.id": null, "Name": "Sugar", "SalesCount": 2, ...,	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137
 "Sales": [{ "TotalAmount": 4, ... }] }
]	Comment by Gerald Krause: ODATA-1137
}
[bookmark: _Custom_Aggregates_1][bookmark: _Toc353453218][bookmark: _Toc353983407][bookmark: _Toc354059098][bookmark: _Toc354070209][bookmark: _Toc354668979][bookmark: _Toc362428756]To place the number of instances in a group next to other aggregated values, the virtual propertyaggregate expression $count can be used: 	Comment by Gerald Krause: ODATA-1255
Example 6259: the result properties for Sales/$count and Sales/Amount are placed differently
GET ~/Products?$apply=groupby((Name),aggregate(Sales($count as SalesCount),
 Sales(Amount with sum as TotalAmount)))
results in
{
 "@odata.context": "$metadata#Products(Name,Sales(SalesCount,TotalAmount))",
 "value": [
 { "@odata.id": null, "Name": "Coffee",
 "Sales": [{ "SalesCount": 2, "TotalAmount": 12, ... }] },
 { "@odata.id": null, "Name": "Paper",
 "Sales": [{ "SalesCount": 4, "TotalAmount": 8, ... }] },
 { "@odata.id": null, "Name": "Pencil",
 "Sales": [{ "SalesCount": 0, "TotalAmount": null, ... }] },
 { "@odata.id": null, "Name": "Sugar",	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137
 "Sales": [{ "SalesCount": 2, "TotalAmount": 4, ... }] }
]	Comment by Gerald Krause: ODATA-1137
}
[bookmark: _Toc492655084]Requesting Custom Aggregates
Custom aggregates are defined through the CustomAggregate annotation. They can be associated with either an entity type or an entity container.
A custom aggregate can be used by specifying the name of the custom aggregate in the aggregate clause.
Example 6360:
GET ~/Sales?$apply=groupby((Customer/Country),
 aggregate(Amount with sum as Actual,Forecast))
results in
{
 "@odata.context": "$metadata#Sales(Customer(Country),Actual,Forecast))",
"value": [
 { "@odata.id": null, "Customer": { "Country": "Netherlands" },
 "Actual": 5, "Forecast": 4, ... },
 { "@odata.id": null, "Customer": { "Country": "USA" },	Comment by Gerald Krause: ODATA-1137
 "Actual": 19, "Forecast": 21, ... }
]	Comment by Gerald Krause: ODATA-1137
}
The introduced dynamic properties MUST always be in the same set as the original property.
Example 6461:
GET ~/Products?$apply=groupby((Name),
 aggregate(Sales(Amount with sum as Actual),
 Sales/Forecast))
results in
{
 "@odata.context": "$metadata#Products(Name,Sales(Actual,Forecast))",
 "value": [
 { "@odata.id":null,"Name": "Coffee", "Sales": [{ "Actual": 12, "Forecast": 6, ... }] },
 { "@odata.id":null,"Name": "Paper", "Sales": [{ "Actual": 8, "Forecast": 2, ... }] },
 { "@odata.id":null,"Name": "Pencil", "Sales": [] },
 { "@odata.id":null,"Name": "Sugar", "Sales": [{ "Actual": 4, "Forecast": 7, ... }] }
]	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137
}
When associated with an entity type a custom aggregate MAY have the same name as a property of the entity with the same type as the type returned by the custom aggregate. This is typically done when the aggregate is used as a default aggregate for that property.
Example 6562 A custom aggregate can be defined with the same name as a property of the same type in order to define a default aggregate for that property.
GET ~/Sales?$apply=groupby((Customer/Country),aggregate(Amount))
results in
{
 "@odata.context": "$metadata#Sales(Customer(Country),Amount)",
 "value": [
 { "@odata.id":null, "Customer": { "Country": "Netherlands" }, "Amount": 5, ... },
 { "@odata.id":null, "Customer": { "Country": "USA" }, "Amount": 19, ... }
]
}	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137
[bookmark: _Toc492655085]Aliasing
A property can be aggregated in multiple ways, each with a different alias.
Example 6663:
GET ~/Sales?$apply=groupby((Customer/Country),
 aggregate(Amount with sum as Total,
 Amount with average as AvgAmt))
results in
{
 "@odata.context": "$metadata#Sales(Customer(Country),Total,AvgAmt))",
"value": [
 { "@odata.id": null, "Customer": { "Country": "Netherlands" },
 "Total": 5, "AvgAmt": 1.6666667, ... },
 { "@odata.id": null, "Customer": { "Country": "USA" },	Comment by Gerald Krause: ODATA-1137
 "Total": 19, "AvgAmt": 3.8, ... }
]	Comment by Gerald Krause: ODATA-1137
}
The introduced dynamic properties MUST always be in the same set as the original property.
Example 6764:
GET ~/Products?$apply=groupby((Name),
 aggregate(Sales(Amount with sum as Total),
 Sales(Amount with average as AvgAmt)))
results in
{
 "@odata.context": "$metadata#Products(Name,Sales(Total,AvgAmt))",
 "value": [
 { "@odata.id":null,"Name": "Coffee", "Sales": [{ "Total": 12, "AvgAmt": 6, ... }] },
 { "@odata.id":null,"Name": "Paper", "Sales": [{ "Total": 8, "AvgAmt": 2, ... }] },
 { "@odata.id":null,"Name": "Pencil", "Sales": [{ "Total": null, "AvgAmt": null }] },
 { "@odata.id":null,"Name": "Sugar", "Sales": [{ "Total": 4, "AvgAmt": 2, ... }] }
]	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137
}
There is no hard distinction between groupable and aggregatable properties: the same property can be aggregated and used to group the aggregated results.
Example 6865:
GET ~/Sales?$apply=groupby((Amount),aggregate(Amount with sum as Total))
will return all distinct amounts appearing in sales orders and how much money was made with deals of this amount
{
 "@odata.context": "$metadata#Sales(Amount,Total)",
 "value": [
 { "@odata.id": null, "Amount": 1, "Total": 2, ... },
 { "@odata.id": null, "Amount": 2, "Total": 6, ... },
 { "@odata.id": null, "Amount": 4, "Total": 8, ... },
 { "@odata.id": null, "Amount": 8, "Total": 8, ... }
]	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137
}
[bookmark: _Toc492655086]Combining Transformations per Group
Dynamic property names may be reused in different transformation sequences passed to concat.	Comment by Gerald Krause: ODATA-1160
Example 6966: to get the best-selling product per country with sub-totals for every country, the partial results of a transformation sequence and a groupby transformation are concatenated:
GET ~/Sales?$apply=concat(
 groupby((Customer/Country,Product/Name,Currency/Code),
 aggregate(Amount with sum as Total))
 /groupby((Customer/Country,Currency/Code),
 topcount(1,Total)),
 groupby((Customer/Country,Currency/Code),
 aggregate(Amount with sum as Total)))
results in
{
 "@odata.context":
 "$metadata#Sales(Customer(Country),Product(Name),Total,Currency(Code))",
 "value": [
 { "@odata.id": null, "Customer": { "Country": "USA" },
 "Product": { "Name": "Coffee" },
 "Total": 12, "Currency": { "Code": "USD" }, ...
 },
 { "@odata.id": null, "Customer": { "Country": "Netherlands" },	Comment by Gerald Krause: ODATA-1137
 "Product": { "Name": "Paper" },
 "Total": 3, "Currency": { "Code": "EUR" }, ...
 },
 { "@odata.id": null, "Customer": { "Country": "USA" },
 "Total": 19, "Currency": { "Code": "USD" }, ...
 },
 { "@odata.id": null, "Customer": { "Country": "Netherlands" },
 "Total": 5, "Currency": { "Code": "EUR" }, ...
 }
]	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137
}
[bookmark: _Toc353294829][bookmark: _Toc353294881][bookmark: _Toc353377479][bookmark: _Toc353390981][bookmark: _Toc353453221][bookmark: _Toc353983409][bookmark: _Toc354059100][bookmark: _Toc354070211][bookmark: _Toc354668981]Example 7067: transformation sequences are also useful inside groupby: To get the aggregated amount by only considering the top two sales amounts per product and county:
GET ~/Sales?$apply=groupby((Customer/Country,Product/Name,Currency/Code),
 topcount(2,Amount)/aggregate(Amount with sum as Total))
results in
{
 "@odata.context":
 "$metadata#Sales(Customer(Country),Product(Name),Total,Currency(Code))",
 "value": [
 { "@odata.id": null, "Customer": { "Country": "Netherlands" },
 "Product": { "Name": "Paper" },
 "Total": 3, "Currency": { "Code": "EUR" }, ...	Comment by Gerald Krause: ODATA-1137
 },
 { "@odata.id": null, "Customer": { "Country": "Netherlands" },
 "Product": { "Name": "Sugar" },
 "Total": 2, "Currency": { "Code": "EUR" }, ...	Comment by Gerald Krause: ODATA-1137
 },
 { "Customer": { "Country": "USA" },	Comment by Gerald Krause: ODATA-905
 "Product": { "Name": "Sugar" },
 "Total": 2, "Currency": { "Code": "USD" }, ...	Comment by Gerald Krause: ODATA-1137
 },
 { "@odata.id": null, "Customer": { "Country": "USA" },
 "Product": { "Name": "Coffee" },
 "Total": 12, "Currency": { "Code": "USD" }, ...	Comment by Gerald Krause: ODATA-1137
 },
 { "@odata.id": null, "Customer": { "Country": "USA" },
 "Product": { "Name": "Paper" },
 "Total": 5, "Currency": { "Code": "USD" }, ... 	Comment by Gerald Krause: ODATA-1137
 }
]
}
[bookmark: _Toc492655087]Model Functions as Set Transformations
Example 7168: as a variation of the example shown in the previous section, a query for returning the best-selling product per country and the total amount of the remaining products can be formulated with the help of a model function.
For this purpose, the model includes a definition of a TopCountAndBalance function that accepts the count for the top entities in the given input set not to be considered for the balance:
<edm:Function Name="TopCountAndBalance"
 ReturnType="Collection(Edm.EntityType)"
 IsBound="true">
 <edm:Parameter Name="EntityCollection"
 Type="Collection(Edm.EntityType)"/>
 <edm:Parameter Name="Count" Type="Edm.Int16"/>
 <edm:Parameter Name="Property" Type="Edm.String"/>
</edm:Function>
The function takes the name of a numeric property as a parameter, retains those entities that topcount also would retain, and replaces the remaining entities by a single aggregated entity, where only the numeric property has a defined value being the aggregated value over those remaining entities:
GET ~/Sales?$apply=groupby((Customer/Country,Product/Name),
 aggregate(Amount with sum as Total))
 /groupby((Customer/Country),
 Self.TopCountAndBalance(Count=1,Property='Total'))
results in 	Comment by Gerald Krause: ODATA-1225
{
 "@odata.context": "$metadata#Sales(Customer(Country),Product(Name),Total)",
 "value": [
 { "@odata.id": null, "Customer": { "Country": "Netherlands" },
 "Product": { "Name": "Paper" }, "Total": 3, ... },
 { "@odata.id": null, "Customer": { "Country": "Netherlands" },	Comment by Gerald Krause: ODATA-1137
 "Product": { "Name": "**Other**" }, "Total": 2, ... },
 { "@odata.id": null, "Customer": { "Country": "USA" },	Comment by Gerald Krause: ODATA-1137
 "Product": { "Name": "Coffee" }, "Total": 12, ... },
 { "@odata.id": null, "Customer": { "Country": "USA" },	Comment by Gerald Krause: ODATA-1137
 "Product": { "Name": "**Other**" }, "Total": 7, ...5 }
]	Comment by Gerald Krause: ODATA-905	Comment by Gerald Krause: ODATA-1137
}
Note that these two entities get their values for the Country property from the groupby transformation, which ensures that they contain all grouping properties with the correct values.
[bookmark: _Toc492655088]Controlling Aggregation per Rollup Level
Consumers may specify a different aggregation method per level for every property passed to rollup as a hierarchy level below the root level.
Example 7269: get the average of the overall amount by month per product.
Using a transformation sequence:
GET ~/Sales?$apply=groupby((Product/ID,Product/Name,Time/Month),
 aggregate(Amount with sum) as Total))
 /groupby((Product/ID,Product/Name),
 aggregate(Total with average as AverageAmount))
Using from:
GET ~/Sales?$apply=groupby((Product/ID,Product/Name),
 aggregate(Amount with sum as MonthlyAverage	Comment by Gerald Krause: ODATA-1201
Change already reflected in ABNF
 from Time/Month with average
 as MonthlyAverage))
Example 7370: for an aggregate entity set listing the total sales amounts per customer and country, the rollup shall produce additional instances for the average total sales amount of customers per country and the average of that average (which is a bit boring because the example data doesn’t have two countries with the same currencyJ)
GET ~/Sales?$apply=groupby((rollup($all,Customer/Country,Customer/ID),
 Currency/Code),
 aggregate(Amount with sum as CustomerCountryAverage
 from Customer/ID with average
 from Customer/Country with average	Comment by Gerald Krause: ODATA-1201
 as CustomerCountryAverage))
results in
{
 "@odata.context": "$metadata#Sales(Customer(Country,ID),CustomerCountryAverage,Currency(Code))",
 "value": [
 { "@odata.id": null, "Customer": { "Country": "USA", "ID": "C1" },
 "CustomerCountryAverage": 7, "Currency": { "Code": "USD" }
 },
 { "@odata.id": null, "Customer": { "Country": "USA", "ID": "C2" },
 "CustomerCountryAverage": 12, "Currency": { "Code": "USD" }
 },
 { "@odata.id": null, "Customer": { "Country": "USA" },
 "CustomerCountryAverage": 9.5, "Currency": { "Code": "USD" }
 },
 { "@odata.id": null, "Customer": { "Country": "Netherlands", "ID": "C3" },
 "CustomerCountryAverage": 5, "Currency": { "Code": "EUR" }
 },
 { "@odata.id": null, "Customer": { "Country": "Netherlands" },
 "CustomerCountryAverage": 5, "Currency": { "Code": "EUR" }
 },
 { "@odata.id": null,
 "CustomerCountryAverage": 9.5, "Currency": { "Code": "USD" }
 },
 { "@odata.id": null,
 "CustomerCountryAverage": 5, "Currency": { "Code": "EUR" }
 }
]
}
[bookmark: _Toc492655089]Transformation Sequences
Applying aggregation first covers the most prominent use cases. The slightly more sophisticated question "how much money is earned with small sales" requires filtering the base set before applying the aggregation. To enable this type of question several transformations can be specified in $apply in the order they are to be applied, separated by a forward slash.
Example 7471:
GET ~/Sales?$apply=filter(Amount le 1)/aggregate(Amount with sum as Total)
means "filter first, then aggregate", and results in
{
 "@odata.context": "$metadata#Sales(Total)",
 "value": [
 { "@odata.id": null, "Total": 2, ... }
]	Comment by Gerald Krause: ODATA-1137
}
Using filter within $apply does not preclude using it as a normal system query option.
Example 7572:
GET ~/Sales?$apply=filter(Amount le 2)/groupby((Product/Name),
 aggregate(Amount with sum as Total))
 &$filter=Total ge 4
results in
{
 "@odata.context": "$metadata#Sales(Product(Name),Total)",
 "value": [
 { "@odata.id": null, "Total": 4, "Product": { "Name": "Paper" }, ... },
 { "@odata.id": null, "Total": 4, "Product": { "Name": "Sugar" }, ... }
]	Comment by Gerald Krause: ODATA-1137	Comment by Gerald Krause: ODATA-1137
}
Example 7673: Revisiting the Example 14Example 14 in section 0 for using the from keyword with the aggregate function, the request
GET ~/Sales?$apply=aggregate(Amount as DailyAverage from Time with average as DailyAverage)	Comment by Gerald Krause: ODATA-1201
could be rewritten in a more procedural way using a transformation sequence returning the same result
GET ~/Sales?$apply=groupby((Time),aggregate(Amount with sum as Total))
 /aggregate(Total with average as DailyAverage)
For further examples, consider another data model containing entity sets for cities, countries and continents and the obvious associations between them.
Example 7774: getting the population per country with
GET ~/Cities?$apply=groupby((Continent/Name,Country/Name),
 aggregate(Population with sum as TotalPopulation))
results in
{
 "@odata.context":
 "$metadata#Cities(Continent(Name),Country(Name),TotalPopulation)",
 "value": [
 { "@odata.id": null, "Continent": { "Name": "Asia" },
 "Country": { "Name": "China" }, "TotalPopulation": 692.580.000, ... },
 { "@odata.id": null, "Continent": { "Name": "Asia" },	Comment by Gerald Krause: ODATA-1137
 "Country": { "Name": "India" }, "TotalPopulation": 390.600.000, ... },
 ...
]	Comment by Gerald Krause: ODATA-1137
}
Example 7875: all countries with megacities and their continents
GET ~/Cities?$apply=filter(Population ge 10000000)
 /groupby((Continent/Name,Country/Name),
 aggregate(Population with sum as TotalPopulation))
Example 7976: all countries with tens of millions of city dwellers and the continents only for these countries
GET ~/Cities?$apply=groupby((Continent/Name,Country/Name),
 aggregate(Population with sum as CountryPopulation))
 /filter(CountryPopulation ge 10000000)
 /concat(identity,
 groupby((Continent/Name),
 aggregate(CountryPopulation with sum
 as TotalPopulation)))
– OR –
GET ~/Cities?$apply=groupby((Continent/Name,Country/Name),
 aggregate(Population with sum as CountryPopulation))
 /filter(CountryPopulation ge 10000000)
 /groupby((rollup(Continent/Name,Country/Name)),
 aggregate(CountryPopulation with sum
 as TotalPopulation))
Example 8077: all countries with tens of millions of city dwellers and all continents with cities independent of their size
GET ~/Cities?$apply=groupby((Continent/Name,Country/Name),
 aggregate(Population with sum as CountryPopulation))
 /concat(filter(CountryPopulation ge 10000000),
 groupby((Continent/Name),
 aggregate(CountryPopulation with sum
 as TotalPopulation)))
Example 8178: assuming the data model includes a sales order entity set with related sets for order items and customers, the base set as well as the related items can be filtered before aggregation
GET ~/SalesOrders?$apply=filter(Status eq 'incomplete')
 /expand(Items,filter(not Shipped))
 /groupby((Customer/Country),
 aggregate(Items/Amount with sum as ItemAmount))
[bookmark: _Toc492655090]Conformance
Conforming services MUST follow all rules of this specification for the set transformations and aggregation methods they support. They MUST implement all set transformations and aggregation methods they advertise via the annotation ApplySupported. 	Comment by Gerald Krause: ODATA-1073
Conforming clients MUST be prepared to consume a model that uses any or all of the constructs defined in this specification, including custom aggregation methods defined by the service, and MUST ignore any constructs not defined in this version of the specification.
[bookmark: _Toc492655091]Acknowledgments
The contributions of the OASIS OData Technical Committee members, enumerated in [OData-Protocol], are gratefully acknowledged.
[bookmark: _Toc492655092]Revision History
	Revision
	Date
	Editor
	Changes Made

	Working Draft 01
	2012-11-12
	Ralf Handl
	Translated contribution into OASIS format

	Committee Specification Draft 01
	2013-07-25
	Ralf Handl
Hubert Heijkers
Gerald Krause
Michael Pizzo
Martin Zurmuehl
	Switched to pipe-and-filter-style query language based on composable set transformations
Fleshed out examples and addressed numerous editorial and technical issues processed through the TC
Added Conformance section

	Committee Specification Draft 02
	2014-01-09
	Ralf Handl
Hubert Heijkers
Gerald Krause
Michael Pizzo
Martin Zurmuehl
	Dynamic properties used all aggregated values. either via aliases or via custom aggregates
Refactored annotations

	Committee Specification Draft 03
	2015-07-16
	Ralf Handl
Hubert Heijkers
Gerald Krause
Michael Pizzo
Martin Zurmuehl
	Added compute transformation
Minor clean-up

	Committee Specification Draft 03	Comment by Handl, Ralf: Fill out
	
	Ralf Handl
Hubert Heijkers
Gerald Krause
Michael Pizzo
Martin Zurmuehl
	

odata-data-aggregation-ext-v4.0-wd05	Working Draft 05	21 June 2016
Standards Track Draft	Copyright © OASIS Open 2016. All Rights Reserved.	Page 17 of 51
image1.emf
Key : Type

Property : Type

Navigation Property

Legend:

ID : String

Name : String

Country : String

Customer

Date : Date

Month : String

Quarter : String

Time

Year : Int16

ID : String

Name : String

Category

ID : String

Name : String

Category

Product

Color : String

ID: String

Customer

Time

Sales

Product

Amount : Decimal

SalesOrganization

Code : String

Name : String

Currency

ID : String

Name : String

Superordinate

SalesOrganization

Currency

TaxRate: Decimal

Sales

Sales

Products

image2.png
Legend: Time Category
Navigation Property Products
Product
Customer

Sales
Sales
— Customer
Time
Product

Currency SalesOrganization

Currency
'_ e

Superordinate

image3.emf
Key : Type

Property : Type

Navigation Property

Legend:

ID : String

Name: String

Country: String

Customer

Date : Date

Month : String

Quarter: String

Time

Year : Number

ID : String

Name: String

Category

ID : String

Name: String

Category

Product

Color: String

ID: String

Customer

Time

Sales

Product

Amount : Decimal

SalesOrganization

Code : String

Name: String

Currency

ID : String

Name: String

Superordinate

SalesOrganization

Currency

TaxRate : String

Sales

Sales

Products

image4.png
Sales
——

Category
—

Product

SalesOrganization

Time

Currency Customer
—

Legend:

image5.png
Currency Customer

SalesOrganization Time

Product

Category

Sales

Property : Type

Legend:

Bus : Aiunon

Buus : sweN

Bus : guawolsny

Bus : aweN

Bus : apooAoualing

QLU D JedA

Bus : 1auenp

Bulys : yuow

ale(: ajeq

Buuis : @jajeuposadng

Buus : sweN

Bulys :qluoneziuebiosales

lewoa(: aeyXxeL

Bus : 10109

Bus : aweN

Buuis : apanpoid

Buus : sweN

bus : glliobajen

Jewlos(: Junowy

image6.png
Legend: Products

[kevmwe]
P1 PG1 Sugar White 0.06
Navigation Property P2 PG1 Coffee Brown 0.06
P3 PG2 Paper White 0.14
_ P4_|PG2 Pencil__| Black 0.14
\ Categories
Time B Name |
PG1 | Food
2012-01-01 | 2012-01 | 2012-1 | 2012 PG2 | Non-Food
2012-04-01 | 2012-04 | 2012-2 | 2012 SalesOrganizations <+—
2012-04-10 | 2012-04 | 2012-2 | 2012 B
Sales Corporate Sales
us Sales us
Customers US West Us US West
US East us US East
C1 | Joe USA
C2 | Sue USA EMEA Sales EMEA
C3 | Sue Netherlands EMEA Central | EMEA EMEA Central
C4 | Luc France
Sales \ / —————— Currencies
-Customer Time Product Orgis::astion Currency - _USD US Dollar
1 c1 2012-01-03 | P3 US West UsbD 1 EUR | Euro
2 c1 2012-04-10 | P1 US West UsbD 2
3 c1 2012-08-07 | P2 US West UsbD 4
4 c2 2012-01-03 | P2 US East UsbD 8
5 c2 2012-11-09 | P3 US East UsbD 4
6 c3 2012-04-01 | P1 EMEA Central | EUR 2
7 c3 2012-08-06 | P3 EMEA Central | EUR 1
8 c3 2012-11-22 | P3 EMEA Central | EUR 2

